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Abstract  

Introduction: An increased incidence of metabolic syndrome has been observed in human 

immunodeficiency virus (HIV)-infected individuals. In contrast, gut dysbiosis is involved in 

various pathogeneses, including vascular endothelial disorders. Organic acids, including short-

chain fatty acids (SCFAs), are essential for maintaining gut homeostasis. Therefore, this study 

aimed to explore the gut microbiome profile and organic acids in a Japanese population infected 

with HIV. 

Methods: Forty-nine patients with HIV infection on combination antiretroviral therapy (cART) 

were enrolled and divided into the high and low CD4 groups based on a CD4 cutoff of 350 

cells/μL. Stool samples were analyzed by 16S ribosomal RNA next-generation sequencing and 

high-performance liquid chromatography. The association between the gut microbiome, 

including bacterial taxa and organic acids, was statistically analyzed. 

Results: The fecal microbial community composition was significantly different between HIV 

patients with CD4 counts above and below 350 cells/µL. The relative abundance of Roseburia, 

Prevotella, Prevotella_9, and [Clostridium]_methylpentosum_group  were significantly 

enriched in the high CD4 group. Fecal succinic acid tended to be more abundant in the low 

CD4 group, and acetic, propionic, and butyric acids tended to be more abundant in the high 

CD4 group. Roseburia was positively correlated with butyric acid levels. Prevotella_9 and 

Prevotella were negatively correlated with succinic acid levels and positively correlated with 

acetic and propionic acid levels. 

Conclusions: This study showed intestinal dysbiosis bordering on a CD4 count of 350 in 

patients with HIV infection undergoing cART. These findings might help in understanding 

intestinal damage and systemic inflammation in HIV infection. 
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Introduction 

In the current era of effective combination antiretroviral therapy (cART), human 

immunodeficiency virus (HIV) infection is a chronic, manageable disease. Combination ART 

has dramatically improved the health of patients with HIV, increased their life expectancy, and 

reduced the risk of HIV transmission. However, HIV-infected individuals are more likely to 

have complications — especially cardiovascular, musculoskeletal, kidney, liver, neurological 

diseases, and cancer [1, 2] — than non-HIV-infected individuals of the same age [3]; this is 

called ‘non-AIDS morbidity.’ 

In clinical cohort studies, the mortality ratios of HIV patients on cART with CD4 counts 

lower than 350 cells per μL were much higher than those with CD4 counts above 350 cells 

per μL. Besides, the mortality rate of HIV patients with CD4 counts above 500 cells per μL 

was close to that of the general population [4, 5]. Evidence indicates that many markers of 

inflammation are higher in antiretroviral-treated adults than in age-matched healthy 

individuals [6, 7]. Currently, causes of inflammation have been explained by ongoing HIV 

production; high levels of other co-pathogens, including cytomegalovirus; cART toxicity; 

traditional risk factors; irreversible damage to the immunoregulatory system; and the 

translocation of microbial products across damaged mucosal surfaces [8]. 

The gut microbiome is important for maintaining intestinal homeostasis and plays a vital 

role in maintaining the mucosal barrier function and regulation of innate and adaptive 

immune responses [9, 10]. Recently, cross-sectional studies have demonstrated changes in the 

gut microbiota of patients with HIV-1 but have focused mostly on Western populations. Some 

studies have shown that higher CD4 counts correlate with higher bacterial diversity in the guts 

of patients with HIV [11, 12], and CD4 counts also alter bacterial diversity [13, 14]. However, 

few studies have focused on Asian populations, such as the Japanese population [15-17]. 

With a better understanding of the gut microbiome, it is now known that in addition to the 

intestinal flora itself, its metabolites are also involved in the immune system [18]. Short-chain 



fatty acids (SCFAs) (mainly acetic, propionic, and butyric acids) are produced by fiber 

fermentation by gut bacteria, particularly by members of the Firmicutes phylum [19]. SCFAs 

are an important link between the flora and the immune system; they involve different 

molecular mechanisms and cellular targets, are essential for the maintenance of intestinal 

homeostasis, and also play a role in HIV infection [20]. Additionally, other organic acids, such 

as lactic and succinic acids, produced by gut bacteria are important SCFA precursors that may 

play a relevant role in health and disease. Succinic acid has attracted considerable attention as 

a proinflammatory mediator in intestinal inflammation [21]. It is already known that there is a 

depletion of colonic producers in HIV-positive patients [22], but the correlations among bacteria 

species, organic acids, and CD4 counts have not been explored yet. 

Therefore, intestinal organic acid profiles and microbiome dysbiosis are HIV infection 

highlights and are likely to be related to the morbidity and mortality of complications 

associated with HIV infection. Despite advances in the field, the relationship between HIV 

infection and organic acids remains unclear. Hence, we sought to understand the association 

among the gut microbiome, CD4 status, and intestinal organic acids in patients with long-term 

suppression of HIV viremia. 

 

Materials and methods 

-Study participants and sample collection 

An observational study of HIV-1-infected individuals was conducted in the Outpatient 

Department of Infectious Diseases at Nara Medical University Hospital, Kashihara, Nara, Japan. 

All participants provided written informed consent in accordance with the Declaration of 

Helsinki. This study was approved by the Ethics Committee of Nara Medical University 

(reference no.1040). In total, 49 patients with HIV on cART were enrolled and divided into the 

high and low CD4 groups based on a CD4 cutoff of 350 cells per μL because CD4 counts below 

350 are associated with higher mortality and non-AIDS complications [5, 23]. 



 

-DNA extraction from stool samples 

Stool samples were collected and stored at -80 ℃ until further use. Samples were processed 

and DNA was extracted as previously described with minor modifications [24-26]. Briefly, 

bacterial DNA was isolated and purified by enzymatic lysis using lysozyme (Sigma-Aldrich Co. 

LCC., Tokyo, Japan) and achromopeptidase (Wako, Osaka, Japan). The suspension was treated 

with 1% (wt/vol) sodium dodecyl sulfate and 1 mg/ml proteinase K (Merck, Tokyo, Japan) and 

incubated at 55℃ for one hour. The lysate was treated with phenol/chloroform/isoamyl alcohol 

(Life Technologies Japan Ltd., Tokyo, Japan). The DNA samples were purified by treatment 

with RNase A (Wako, Osaka, Japan), followed by precipitation with 26% PEG solution 

(PEG6000 in 1.6 M NaCl). The DNA was pelleted by centrifugation, rinsed with 75% ethanol, 

and dissolved in TE buffer. 

 

-PCR amplification and analysis of 16S rRNA sequences 

The 16S rRNA gene sequencing was performed as previously described with minor 

modifications [27]. The V3–V4 regions of the 16S rRNA gene were amplified by PCR using 

TaKaRa Ex Taq® Hot Start Version (Takara Bio Inc., Shiga, Japan) and the Illumina forward 

primer 5'-AATGATACGGCGACCACCGAGATCTACAC (adaptor sequence) plus barcode 

(eight bases) plus ACACTCTTTCCCTACACGACGCTCTTCCGATCT (sequence primer) 

plus NN (sequence for improved cluster separability) plus CCTACGGGNGGCWGCAG-3' 

(341F) and the Illumina reverse primer 5’-CAAGCAGAAGACGGCATACGAGAT (adaptor 

sequence) plus barcode (eight bases) plus 

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT (sequence primer) plus NN 

(sequence for improved cluster separability) plus GACTACHVGGGTATCTAATCC-3’ (805R) 

to the hypervariable V3–V4 region of the 16S rRNA gene; they contain the Illumina index and 

adapter overhang sequences. The amplicons generated from each sample were purified using 



SPRISelect (Beckman Coulter, Brea, CA, USA). Purified amplicons were quantified using a 

Quantus Fluorometer and ONEdsDNA System (Promega, Madison, WI, USA) and pooled at 

approximately equal concentrations. Mixed samples were sequenced using the MiSeq Reagent 

Kit V3 (600 cycles) and MiSeq sequencer (Illumina, San Diego, CA, USA) according to the 

manufacturer’s instructions. The 16S rRNA gene sequence data generated from the MiSeq 

sequencer were processed using the quantitative insights into the Microbial Ecology 2 (QIIME2 

October 2019) pipeline [28]. The paired-end raw sequence reads were quality-filtered, denoised, 

merged, and chimeras were removed using QIIME2's DADA2 plugin [29]. Taxonomic 

classification of amplicon sequence variants (ASVs) obtained from DADA2 was performed 

using the feature-classifier classify-sklearn plugin [30] in the SILVA database v138.1. A 

phylogenetic tree was generated by the "phylogeny align-to-tree-mafft-fasttree" plugin and 

diversity analysis was performed using the "diversity core-metrics-phylogenetic" plugin. 

 

-Organic acid measurement using high-performance liquid chromatography (HPLC) 

Feces (200 mg) were placed in a 2.0 mL tube and suspended in 800 µL of 1× PBS. The 

suspensions were vortexed for 1 min, kept on ice for 5 min, and centrifuged at 10,000 × g for 5 

min at 4 ℃. The supernatants were filtered through a 0.45-µm filter (Merck Millipore, MA, 

USA). Organic acid measurements were conducted using high-performance liquid 

chromatography (Prominence, SHIMADZU, Kyoto, Japan) as previously described [31]. 

 

-Statistical analysis 

We performed statistical methods such as the following and considered p < 0.05 statistically 

significant. The Mann-Whitney U test was used for the comparison of continuous variables 

between two groups. Spearman’s correlation analysis was conducted to identify relationships 

between fecal microbiome abundance and organic acids. These tests were performed using R 

software version 4. 1. 1.  



 

Results 

-Study populations 

Among the 49 patients with HIV, 31 were men who had sex with men (MSM), and 46 had 

been treated with cART for > 16 months. The participants’ characteristics are listed in Table 1. 

The characteristics of participants in both groups were similar, with the following exceptions: 

hypertension (8.6% in the high CD4 group and 35.7% in the low CD4 group; p = 0.02) and 

body mass index (median 34.2 in the high CD4 group and 22.4 in the low CD4 group; p = 

0.043). 

 

-Fecal microbiome diversity 

Rarefaction analysis of operational taxonomic units (OTUs) indicated that sufficient 

sequencing depth was achieved to avoid biases from unequal sample sizes. 

 In the low CD4 group, we found decreased alpha diversity (estimated observed OTUs and 

chao1: Figure 1A) compared to the high CD4 group. Species richness values based on the 

Shannon index were lower in the low CD4 group than in the high CD4 group, although the 

differences between groups were not statistically significant (p = 0.293). 

The fecal microbiota was dominated by five phyla: Firmicutes, Actinobacteriota, 

Bacteroidota, Proteobacteria, and Fusobacteriota (Supplementary Table 1). There was no 

statistical difference between the high and low CD4 groups at the phylum level 

(Supplementary Figure 1). The bacterial taxa in the genus level in each category are listed in 

Table 2. Blautia, Bifidobacterium, and Faecalibacterium, which are known to produce 

SCFAs, were dominant in both groups. Prevotella_9, Catenibacterium, Megamonas, and 

Megasphaera were listed in the top 20 genera in the high CD4 group, whereas Enterococcus, 

Anaerostipes, Coprococcus, and Ruminococcus were listed in the top 20 genera in the low 

CD4 group. There was a positive correlation between chao1 and CD4 counts or nadir CD4 



counts (Figure 1B). Consistent with this, a permutational multivariate analysis of the variance 

test of beta diversity based on unweighted UniFrac distance revealed that the bacterial 

communities were significantly different between the low and high CD4 groups. Intragroup 

dissimilarity between the two groups was supported by principal coordinate analysis (PCoA) 

based on the unweighted UniFrac results (Figure 1C). 

 Furthermore, several taxa were significantly enriched in the high CD4 group, including 

Roseburia, Prevotella, Prevotella_9, and [Clostridium]_methylpentosum_group, which 

produce SCFAs elsewhere [32-36] (Figure 2, Supplementary Figure 2). 

 

-Intestinal organic acid measurement 

 Organic acid measurements in the feces revealed no statistically significant difference between 

the low and high CD4 groups. However, acetic acid, propionic acid, and butyric acid were 

enriched in the high CD4 group. In contrast, succinic acid was enriched in the low CD4 group 

(Figure 3A). Next, we investigated the relationships between the amounts of organic acids in 

feces and the relative abundance of SCFA-producing bacterial taxa at the genus level, which 

were enriched in the high CD4 group. The results of the above four SCFA-producing bacteria 

are shown in Supplementary Table 2. The organic acids that showed significant correlations 

with at least one of these species were succinic acid, acetic acid, propionic acid, and butyric 

acid. Roseburia was positively correlated with butyric acid levels. Prevotella_9 and Prevotella 

were negatively correlated with succinic acid and positively correlated with acetic and 

propionic acid levels. In contrast, [Clostridium]_methylpentosum_group showed no correlation 

with the amount of organic acids in feces (Figure 3B/C/D/E). 

 

Discussion 

 We report the gut microbiome of patients with HIV who received successful cART in Japan. 

Moreover, we also revealed the association between fecal organic acids and the gut microbiome 



in people living with HIV (PLWH).  

 In the present study, Firmicutes, Actinobacteriota, and Bacteroidota occupied 97.6% at the 

phylum level of the gut microbiome, and Blautia and Bifidobacterium were dominant at the 

genus level. In the healthy Japanese group, Firmicutes, Actinobacteriota, and Bacteroidota were 

ranked in order of abundance, and at the genus level, Bifidobacterium and Blautia were 

dominant compared to other countries [26]. By contrast, in a Chinese study, Firmicutes, 

Bacteroidota, and Proteobacteria were dominant at the phylum level in both PLWH and healthy 

controls, whereas Bacteroidetes and Prevotella were dominant at the genus level in both PLWH 

and healthy controls [37]. The abundance of the gut microbiome was similar regardless of HIV 

infection but might depend on dietary habits or area of residence. Thus, it is difficult to compare 

our data with data from other countries, including among HIV-positive or -negative populations. 

This report is important because only a few studies have examined the gut microbiome of 

PLWH in Japan. 

Our findings showed a statistically significant association between low CD4 count, low nadir 

CD4 count, and decreased alpha diversity in the gut microbiome of patients with HIV. Ishizaka 

et al. [16] also reported a decreased alpha diversity in the low CD4 group, especially in those 

with CD4 counts below 250 cells per μL, compared with that of those with CD4 counts above 

250 cells per μL and healthy controls; they also reported that alpha diversity was restored upon 

treatment initiation. In our study, a similar reduction in alpha diversity with lower CD4 counts 

was observed; however, the new results suggest that even 350 cells per µL can be a cutoff CD4 

count. Our findings showed that nadir CD4 counts were positively correlated with the alpha 

diversity of the gut microbiome in patients with HIV. Guillén et al. [38] reported that nadir CD4, 

female sex, Caucasian race, non-MSM status, and HIV status were associated with low gene 

richness in the gut microbiome. In this study, the nadir CD4 count might have been a 

confounding factor for the current CD4 count.  

Herein, there were many similar taxa at the genus level compared with Ishizaka et al. [16], 



and Prevotella_9, Megamonas, Catenibcaterium, Roseburia, Prevotella, and Romboutsia spp. 

were relatively abundant (Supplementary Figure2). Among these, Prevotella_9, Rosenburia, 

and Prevotella spp. have been reported to be SCFA-producing bacteria. 

In our study, fecal succinic acid tended to be more abundant in the low CD4 group, and acetic, 

propionic, and butyric acids tended to be more abundant in the high CD4 group, although the 

metabolomic analysis did not reveal any significant differences. This lack of clear differences 

between the two groups in organic acids may be due to the fact that Blautia, Bifidobacterium, 

and Faecalibacterium, which have been reported to produce SCFAs, were abundant in both 

groups. 

In contrast, we found positive correlations between Roseburia and butyric acid as well as 

Prevotella and acetic and propionic acids. We also found a negative correlation between 

Prevotella and succinic acid. Generally, a healthy intestinal microbiome is dominated by 

obligate anaerobic bacteria whose fermentation increases SCFAs. One of the major SCFAs is 

butyrate, which maintains an anaerobic environment in the intestine by facilitating oxygen 

consumption by epithelial cells and improving the intestinal barrier function [39]. SCFAs play 

an important role in the maintenance of intestinal and immune homeostasis and are 

predominantly related to anti-inflammatory effects (butyric > propionic > acetic acids) 

[40]. The role of gut dysbiosis in chronic HIV infection suggests that reducing intestinal 

inflammation and increasing the gut barrier function may effectively improve the prognosis of 

patients with HIV. The HIV-associated microbial profile that was previously observed was 

similar to ours with regard to the enrichment of facultative anaerobic bacteria and a decline in 

butyrate-producing bacteria [16, 41].  

We have shown that fecal succinic acid tends to be more abundant in the low CD4 group and 

has a negative correlation with Prevotella and Prevotella_9 in the feces of people with chronic 

HIV infection. Succinic acid is an important immunoregulatory metabolite that can modulate 

the immune response and inflammation in a variety of ways. Specifically, microbiota-derived 



succinic acid was shown to initiate a type Ⅱ immune response [42, 43]. Liu et al. [44] have 

shown that notable depletion of Blautia and elevated succinic acid may underlie hepatic 

inflammation in IgG4-related sclerosing cholangitis. To the best of our knowledge, few studies 

have examined the association between fecal succinic acid, CD4 count, and bacterial taxa. Our 

study might help in understanding intestinal damage and systemic inflammation in HIV 

infection.  

This study had certain limitations. It lacked healthy controls; therefore, we could not compare 

the HIV-positive and -negative groups. In addition, there have been some reports of gut 

microbiome alterations associated with sexual behavior [35, 45], but we were unable to 

compare the MSM and non-MSM groups. 

Collectively, our study shows that gut dysbiosis is associated with HIV infection, despite 

successful cART. These observations will enable a better understanding of the correlation 

between HIV, the gut microbiome, and organic acids, and the design of new microbiome-based 

therapies for HIV infection. Further studies are required to evaluate the long-term consequences 

of alterations in the microbiota following HIV infection and treatment. 

 

Conclusions 

This report provides a new understanding of the changes in the gut microbiota and enriches 

the knowledge on the dysbiotic features in PLWH in Japan. Additionally, it demonstrates the 

importance of studying specific changes in our population and highlights the necessity for 

deeper and longer studies with different HIV groups. 
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Figure Captions 

 

Figure 1A: Alpha diversity (observed OTUs and chao1) in the high and low CD4 groups 

Figure 1B: Correlation between alpha diversity (chao1) and CD4 or nadir CD4 in HIV 

patients 

Figure 1C: Beta diversity comparisons between the low and high CD4 groups (Unweighted 

UniFrac : p = 0.002) 

 

Figure 2: Heat map of significantly different bacterial flora composition between the low and 

high CD4 groups. Color intensity indicates row-scaled (z-score) relative abundance. 

 

Figure 3A: The amount of organic acid in feces in the low and high CD4 groups. 

The number above each bar is the p-value between the two groups. 

 

Figure 3B: Correlation between Roseburia and Succinic/Acetic/Propionic/Butyric acids 

Figure 3C: Correlation between Prevotella_9 and Succinic/Acetic/Propionic/Butyric acids 

Figure 3D: Correlation between Prevotella and Succinic/Acetic/Propionic/Butyric acids 

Figure 3E: Correlation between [Clostridium]_methylpentosum_group and 

Succinic/Acetic/Propionic/Butyric acids 

 

Supplementary Figure 1: Correlation between bacteria taxa at the phylum level and CD4 counts 

Supplementary Figure 2: The boxplot of bacterial taxa treated in Figure 2 between the low and 

high CD4 groups 
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