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Effect of carbon monoxide administration using haemoglobin-vesicles on the
hippocampal tissue

Chie Okudaa,b and Hiromi Sakaia

aDepartment of Chemistry, Nara Medical University, Kashihara, Japan; bDepartment of Anesthesiology, Nara Medical University,
Kashihara, Japan

ABSTRACT
Carbon monoxide (CO) is a toxic gas that causes neuropathy. However, CO is endogenously produced
in small amounts showing various beneficial effects. We hypothesized that CO-bound haemoglobin-
vesicle (HbV) administration would reduce cerebral ischaemia–reperfusion injury without causing
neuropathy. Three experiments were conducted. First, rats were exposed to CO inhalation to create a
CO-poisoning group, and they were sacrificed on 0, 7, 14, and 21days after CO exposure.
Histopathologically, hippocampal damage was prominent at 14 days. Second, the rats were adminis-
tered with CO-HbV equivalent to 50 or 25% of circulating blood volume (CO-HbV50 or CO-HbV25
group). Rats were sacrificed 14days after administration. Third, rats put into haemorrhagic shock by
50% of circulating blood withdrawal were resuscitated using saline, autologous blood, and CO-HbV.
They were sacrificed 14days after resuscitation. Hippocampal damage assessment clarified that almost
no necrotic cells were observed in the CO-HbV50 group. Necrotic cells in the CO-HbV25 group were
comparable to those found for the control group. In rats resuscitated from haemorrhagic shock, the
hippocampal damage in the group using CO-HbV was the mildest. Administration of CO-HbV did not
lead to marked hippocampal damage. Furthermore, CO-HbV was effective at preventing cerebral
ischaemia-reperfusion injury after haemorrhagic shock.
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Introduction

Carbon monoxide (CO), a colourless, tasteless, odourless, and
non-irritating toxic gas, produces hypoxia by binding with
haemoglobin, thereby reducing the oxygen-carrying capacity
of the blood and producing hypoxia in the tissues. Various
mechanisms related to CO poisoning are known to cause
both tissue hypoxia and direct cellular changes involving
immunological or inflammatory damage [1]. Acute poisoning
and persistent poisoning are both classifications of CO
poisoning. Clinical symptoms of acute CO poisoning are non-
specific. They can suggest various common disorders. In add-
ition, diagnostic imaging shows globus pallidus lesions and
edoema centred on the white matter of the cerebrum [2,3].
With persistent poisoning, delayed neuropathy occurs days
to weeks after the acute symptoms have recovered.
Neurological symptoms, such as decreased concentration,
learning ability, and Parkinson-like syndrome appear.
Furthermore, histopathological and imaging studies show
necrosis of the globus pallidus and hippocampus and loss of
myelin in the cerebral white matter [4–7].

Actually, CO is produced in small amounts in the body,
where it possesses anti-inflammatory antioxidant capabilities.
It has attracted interest as a possible clinically viable medical
agent [8–11]. The two main modes of CO administration are

intratracheal and intravenous. Intratracheal administration is
the inhalation of CO gas, which has been reported as effect-
ive for lung diseases, such as chronic obstructive pulmonary
disease and pneumonia [12–14], endotoxemia [15], and car-
diac hypertrophy [16]. For intravenous administration,
CO-releasing molecules (CORM), CO-bound red blood cell
(CO-RBC), and CO-bound haemoglobin vesicles (CO-HbV) are
experimentally tested. Most CORMs are metal carbonyl com-
plexes with CO bound to them. Various specific triggers initi-
ate the release of CO. For example, CO is released by the
effects of esterification, phosphorylation, and photochemical
external activation by light of various wavelengths, combina-
tions of thermal degradation and ligand replacement, and
replacing ligands [17–21]. Reportedly, CO administration
using CORM is effective for treating ischaemia–reperfusion
injury of kidney and retinal ganglion cells [22,23], inflamma-
tory bowel disease [24], and non-alcoholic steatohepatitis
[25]. CO-RBC is produced by isolating RBC from the blood of
donor animals and the succeeding exposure to CO gas. It has
been reported that CO-RBC improves microvascular function
when administered during resuscitation of haemorrhagic
shock [26] and reduces hepatic ischaemia-reperfusion
injury [27,28].

The cellular structure of HbV most closely mimics charac-
teristics of natural red blood cells (RBCs), in which highly
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concentrated haemoglobin (Hb) is encapsulated within a lipo-
some (Figure 1). The CO binds easily and stably to Hb in HbV
and CO-HbV released CO in blood circulation for 6 h after
administration. Until now, animal studies have confirmed
various beneficial effects of CO-HbV administration.
Reportedly, it exerts protective effects against ischaemic
reperfusion injury of the liver, pulmonary fibrosis, acute pan-
creatitis, and colitis [29–32], but the safety of CO-HbV admin-
istration in relation to the cerebral nervous system has not
been fully elucidated.

Delayed CO intoxication is associated with learning disabil-
ities, i.e. impaired memory, and cellular damage in the hippo-
campus has been reported [7,33,34]. Thus, it is necessary to
clarify the effects of CO-HbV administration on hippocampal
tissue. For this study, we confirmed the safety of CO-HbV
administration on the hippocampal tissue and investigated
the effectiveness of CO-HbV administration on ischaemia–re-
perfusion injury in the brain by resuscitating rats in haemor-
rhagic shock with CO-HbV.

Materials and methods

Preparation of HbV and CO-HbV

HbV was prepared under sterile conditions, as reported ear-
lier [29,35]. The Hb was purified from outdated donated
blood that had been provided by the Japanese Red Cross
Society (Tokyo, Japan). First, Hb was converted to carbonyl
haemoglobin (HbCO) for stabilization. It was pasteurized
(60 �C for 12 h) and nano-filtrated to inactivate and remove
the virus. After the obtained HbCO solution was dialyzed
and concentrated by ultrafiltration to 40 g/dL, it was encap-
sulated in vesicles using the kneading method with a
liposomal membrane comprising biocompatible four lipids:
1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine, choles-
terol, 1,5-O-dihexadecyl-N-succinyl-L-glutamate, and 1,2-dis-
tearoyl-sn-glycerol-3-phosphatidylethanolamine-N-PEG5000
to obtain CO-HbV. Finally, CO-HbV was adjusted with saline
(Otsuka Pharmaceutical Co., Ltd., Tokyo, Japan) to provide
the Hb concentration of 10 g/dL.

Animals

All experimental protocols were reviewed by the Committee
on the Ethics of Animal Experiments at Nara Medical
University (approval number: 11691, 11797, and 12438) and
were conducted in accordance with the Guidelines for
Animal Experiments issued by the University and the
European Directive 2010/63/EU. The ethical guidelines con-
formed to guiding principles issued by the National Academy
of Sciences.

Male Wistar rats aged 7–10weeks were purchased from
Oriental Bioservice, Inc. (Kyoto, Japan). They were housed in
cages with a bed of cellulose paper in a ventilated, tempera-
ture-controlled, specific-pathogen-free environment with a
12-h light-dark cycle. The animals were provided with free
access to food and water. The following three experiments
were conducted using these rats.

Exposure by CO gas

This experiment was conducted to create a model for CO
poisoning using 16 rats. Each rat was anaesthetized using
1.5% isoflurane (Mylan Seiyaku Ltd., Tokyo, Japan)-mixed air
(1 L/min) inhalation using a vaporizer (Forawick; Muraco
Medical Co., Ltd., Tokyo, Japan) throughout the experiment
(fraction of inspired O2: FiO2 ¼ 21%) while spontaneous
breathing was maintained. A polyethylene catheter (SP31;
Natsume Seisakusho Co., Ltd., Tokyo, Japan) filled with hep-
arinized normal saline was inserted into the femoral artery.
Next, the carrier gas for isoflurane was changed from air to
3000 ppm CO (Sumitomo Seika Chemicals Co., Ltd., Osaka,
Japan) and was exposed to CO for 60min. Arterial blood gas
analysis was conducted before exposure and every 10min
during CO exposure and 30min after the end of the expos-
ure. The rats were sacrificed for purposes of histopathological
examination on the day of CO exposure (n¼ 4) and at 7 days
(n¼ 4), 14 days (n¼ 4), and 21 days (n¼ 4) after exposure.

Administration of CO-HbV to healthy rats

Rats were anaesthetized and catheterized in the same man-
ner. Each rat received overdose administration of CO-HbV
equivalent to 50% (n¼ 4) or 25% (n¼ 4) of circulating blood
volume from the femoral artery (CO-HbV50 group or CO-
HbV25 group) at a rate of 1ml/min using a syringe (Terumo
Corp., Tokyo, Japan). The systemic blood volume was esti-
mated as 56ml/kg body weight. Arterial blood gas analysis
was performed before and after administration. Then the
catheter was removed from the femoral artery. The wound
was closed. Then the rats were brought out of anaesthesia
and were returned to their respective cages. At 14 days after
CO-HbV administration, the rats were sacrificed for purposes
of histopathological examination.

Resuscitation from hemorrhagic shock with CO-HbV

Rats were anaesthetized and catheterized similarly using 12
rats. Haemorrhagic shock was induced by withdrawing 50%
of the circulating blood volume (28ml/kg, 1ml/min) from the
femoral artery using a heparinized syringe. After 15min, the
rats were resuscitated by infusion of CO-HbV (n¼ 4), autolo-
gous whole blood (WB) (n¼ 4), and normal saline solution
(n¼ 4) at a rate of 1ml/min. The volume of the infused resus-
citative fluid was identical to the shed volume: 50% of the
blood volume at baseline. The CO-HbV used for resuscitation
(8.6ml) was mixed with human serum albumin (HSA; 25%,
1.4ml; Japan Blood Products Organization, Tokyo, Japan) to
regulate [HSA] in the suspending medium to 5 g/dL and the
colloid osmotic pressure to �20 Torr. Arterial blood gas ana-
lysis was performed before and after withdrawing blood and
after administration of resuscitation fluid. The blood pressure
of the femoral artery was monitored continuously (PROPAQ
204 EL; Welch Allyn Inc., NY, USA). Then the catheter was
removed from the femoral artery. The wound was closed.
The rats were brought out of anaesthesia and were returned
to the cage. For purposes of histopathological examination,
the rats were sacrificed 14 days after resuscitation.
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The shock state severity was confirmed from the assess-
ment of four rats that received no resuscitative fluid. The sur-
vival rate decreased in a few hours. All the rats died
within 24 h.

Control group

Rats were anaesthetized and catheterized in the same man-
ner (n¼ 4). After 15min, the catheter was removed from the
femoral artery and the wound was closed. The rats were
brought out of anaesthesia and were returned to the cage.
After 14 days, the rats were sacrificed for purposes of histo-
pathological examination.

Arterial blood gas analysis

All arterial blood gas analyses conducted for this study were
performed using a portable blood gas analyzer (ABL80 FLEX-
CO-OX; Radiometer Medical ApS Co. Ltd., Tokyo, Japan). The
measurement items were HbCO to evaluate the amount of
CO taken into the body, arterial partial pressure of carbon
dioxide (PaCO2), arterial partial pressure of oxygen (PaO2) to
evaluate the changes in respiratory status because of CO
inhalation, and pH to evaluate the acid–base balance.

Histopathological examination

Sacrificed rats had their brains perfused with saline and 10%
formalin neutral buffer (Sigma-Aldrich Japan K.K., Tokyo,
Japan). After decapitation, the brains were fixed in formalin.
Then paraffin sections of the hippocampus were stained with
haematoxylin/eosin (HE) to assess the cellular structure.
Immunohistochemical analyses were done to detect 8-
hydroxy-20-deoxyguanosine (8-OHdG): the most direct indica-
tion of oxidative damage. Paraffin sections of the same area
used for HE stains were reacted with anti-8-OHdG antibody
(Abcam plc., Tokyo, Japan) and HistostarTM (Msþ Rb) for rat
Tissue (Medical & Biological Laboratories Co., Ltd., Tokyo,
Japan) and were then stained (Super SensitiveTM DAB;
Medical & Biological Laboratories Co., Ltd., Tokyo, Japan).
Meyer haematoxylin (Muto Pure Chemicals Co., Ltd., Tokyo,
Japan) was used for nuclear staining. Phosphate-buffered
saline (LSI Medience Corp., Tokyo, Japan) was used for wash-
ing after each procedure.

All cells (about 1000–2000 cells) in the hippocampal area
on the right or left side of these specimens were evaluated
to determine the ratio of normal to necrotic cells. Necrotic

cells were defined as those that did not retain their cell
shape and whose nuclei could not be identified.

Statistical analyses

All datasets were analyzed using software (BellCurve for
Excel; Social Survey Research Information Co., Ltd., Tokyo,
Japan). The p-values correspond to two-tailed tests for which
significance inferred for p< .05. Means ± standard deviation
are reported for all measurements unless otherwise specified.

Results

CO poisoning

The HbCO concentration in the blood was 0.9 ± 0.4% before
the start of CO inhalation. It increased gradually and eventu-
ally reached 69.0 ± 1.9% (Figure 2). After the end of CO inhal-
ation, it decreased gradually and reached 41.4 ± 4.3 after
30min. Before CO inhalation, PaO2 was 79.6 ± 18.7mmHg; it
increased gradually after the start of inhalation to a max-
imum of 143.3 ± 14.0mmHg after 60min and decreased grad-
ually after the end of CO inhalation to a final value of
102.4 ± 19.9mmHg. Also, PaCO2 decreased gradually from
35.3 ± 9.01 to 24.9 ± 13.6mmHg, but it increased after the
end of CO inhalation. It reached 40.7 ± 7.8mmHg 30min after
the end of inhalation. The pH decreased from 7.36 ± 0.03 to
7.02 ± 0.08; it increased to 7.1 ± 0.11 30min after the end of
CO inhalation.

The percentages of necrotic cells in hippocampal tissue
specimens (HE stains) after 0, 7, 14, and 21 days of CO expos-
ure were, respectively, 7.0 ± 2.2, 15.3 ± 4.2, 28.0 ± 7.2, and
17.7 ± 7.6% (Figure 3). The percentages of necrotic cells in 8-
OHdG-stained tissue specimens after 0, 7, 14, and 21days of
exposure were, respectively, 12.0 ± 3.3, 20.4 ± 2.7, 34.0 ± 6.1,
and 15.7 ± 3.9%, which were similar profiles to those of HE-
stained specimens. Figures 4(A,B) are HE and 8-OHdG stained
hippocampal specimens of the control group. Figures 4(A,B)
are HE and 8-OHdG stained hippocampal specimens of the
control group. Tissue samples at 14 days after CO exposure,
when necrotic cells were most abundant, are shown in
Figures 4(C,D).

Safety of CO-HbV administration

In hippocampal tissue specimens, almost no necrotic cells
were found in the CO-HbV50 and CO-HbV25 groups (Figures
4(E,F)). The percentages of necrotic cells were the small num-
bers of 4.4 ± 0.4% in the CO-HbV50 group and 0.9 ± 0.5% in

Figure 1. Cellular structure of haemoglobin-vesicles (HbV). A highly concentrated carbonyl haemoglobin (HbCO) is encapsulated within a liposome with polyethyl-
ene glycol.
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the CO-HbV25 group, which were comparable to 0.8 ± 0.2%
found for the control group (Figure 5(A)). In the CO poison-
ing group, the level of HbCO after CO inhalation was as high
as about 70%, whereas, in the CO-HbV50 group, the level of
HbCO after administration was 28.2 ± 1.8%. In the CO-HbV25
group, it was as low as 12.2 ± 0.5% (Figures 5(B)).

Resuscitation from hemorrhagic shock

The blood pressure decreased after bleeding. The average
blood pressure became <30mmHg. After administration of
the resuscitation fluid, all groups quickly recovered to higher
60mmHg as reported in the previous study [26]. The blood
HbCO concentration increased to only 25.6 ± 1.1% after resus-
citation in the CO-HbV resuscitation group (Figure 6(A)).

At 14 days after resuscitation, hippocampal tissue samples
showed necrotic cells in all groups (Figure 7). The lowest per-
centage of necrotic cells in the tissue specimens (HE stains)
was in the group resuscitated with CO-HbV (4.8 ± 1.5%). The
next lowest was 7.6 ± 0.5% in the group resuscitated with
WB, and the highest was 12.9 ± 3.2% in the group resusci-
tated with saline. There was a significant difference in the
percentage of necrotic cells among the three groups
(p< .05), especially between the group resuscitated with CO-
HbV and the group resuscitated with saline (p< .01). The per-
centages of necrotic cells in 8-OHdG-stained tissue specimens
14 days after resuscitation were 5.0 ± 1.8% in the group resus-
citated with CO-HbV, 9.0 ± 2.0% in the group resuscitated
with autologous blood, and 12.3 ± 3.1% in the group resusci-
tated with saline (Figure 6(B)). These results were similar to
those obtained for HE-stained specimens.

Discussion

The main finding of this study is that CO administration with
HbV is not only safe for the hippocampal tissue when admin-
istered to normal rats. It is also effective at reducing ischae-
mia–reperfusion injury after haemorrhagic shock.

Although CO is a toxic gas, trace amounts of CO are also
produced endogenously in living organisms. The main source
of endogenous CO is haem degradation by haem oxygenase,

Figure 2. Arterial blood gas analysis in the carbon monoxide (CO) poisoning group. Arrows indicate when CO inhalation is complete. (A,B) The carbonyl haemoglo-
bin (HbCO) and arterial partial pressure of oxygen (PaO2) concentration in the blood increased gradually. After the end of CO inhalation, it decreased gradually.
(C,D) Arterial partial pressure of carbon dioxide (PaCO2) and pH decreased gradually and then increased after CO inhalation ended. Collectively, these results suggest
that the increased respiratory rate because of CO inhalation caused an increase in blood oxygen (O2) and a decrease in blood carbon dioxide (CO2), but it also
caused an O2 deficiency in peripheral tissues, resulting in acidosis.

Figure 3. Percentage of necrotic cells in carbon monoxide (CO) poisoning
group: (A) haematoxylin/eosin (HE) stained and (B) 8-hydroxy-20-deoxyguano-
sine (8-OHdG) stained. �p< .05, ��p< .01.

4 C. OKUDA AND H. SAKAI



but non-haem sources, such as lipid peroxidation, photooxi-
dation, and metabolic activity of intestinal bacteria also exist
[36–39]. The endogenous CO produced in this way is
regarded as a messenger molecule in vascular and neurologic
tissues [40–43]. However, the amount and the source of
haem as a substrate and the amount of CO produced remain

unclear. These observations engender the concept of
using exogenous, not endogenous, CO for thera-
peutic purposes.

Many reports have described the various benefits of CO
administration. Regarding the administration method, various
methods, such as trans-respiratory administration, such as

Figure 4. Histopathological examination of brain (hippocampus): (A) Haematoxylin/eosin (HE) stained specimen of the control group, (B) 8-hydroxy-20-deoxyguano-
sine (8-OHdG) stained specimen of the control group, (C) HE stained specimen of the carbon monoxide (CO) poisoning group, (D) 8-OHdG stained specimen of the
CO poisoning group, (E) HE stained specimen of the CO-bound haemoglobin vesicles (CO-HbV) 50 group, and (F) HE stained specimen of the CO-HbV25 group.
Arrows indicate some representative necrotic cells.

Figure 5. (A) Comparison of the degree of hippocampal cell damage. (B) Level of carbonyl haemoglobin (HbCO). (i) Carbon monoxide (CO) poisoning group after
CO inhalation, (ii) CO-bound haemoglobin vesicles (CO-HbV) 50 group after CO-HbV administration, (iii) CO-HbV25 group after CO-HbV administration, and (iv) con-
trol group. �Significant difference compared to the control group (p< .05).
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inhalation of CO gas and intravenous administration using
HbV and CORM have been tried [44,45]. For CO administra-
tion via the respiratory tract, it was difficult to adjust the dos-
age because CO exposure varied with changes in breathing
patterns. Nevertheless, it is now possible to maintain a

constant CO gas concentration in the ventilatory circuit by
adjusting changes in the ventilation rate and flow rate [13]. A
phase I clinical trial of inhaled CO is also underway to treat
acute respiratory distress syndrome because of sepsis using
this system [46].

Figure 6. (A) Level of carbonyl haemoglobin (HbCO). (B) Degree of hippocampal cell damage 14 days after resuscitation. (CO-HbV) The group resuscitated using car-
bon monoxide-bound haemoglobin vesicles, (WB) The group resuscitated using the autologous whole blood, (NS) The group resuscitated using the normal saline.�p< .05, ��p< .01.

Figure 7. Histopathological examination of the brain (hippocampus) in the group of resuscitation from haemorrhagic shock. (A) Haematoxylin/eosin (HE) stained
specimen of carbon monoxide-bound haemoglobin vesicles (CO-HbV) resuscitation group, (B) 8-hydroxy-20-deoxyguanosine (8-OHdG) stained specimen of the CO-
HbV resuscitation group, (C) HE stained specimen of the autologous whole blood (WB) resuscitation group, (D) 8-OHdG stained specimen of the WB resuscitation
group, (E) HE stained specimen of the normal saline (NS) resuscitation group, and (F) 8-OHdG stained specimen of the NS resuscitation group. Arrows indicate some
representative necrotic cells.
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Most of the CORM is metal carbonyl complexes. Side
effects caused by the contained metals pose some difficulty.
Therefore, CORM using various transition metals and main
group elements have been investigated [19,47,48]. In add-
ition, because CORM releases CO rapidly, one must continue
administering CORM to maintain the therapeutic effect.
Therefore, delivery systems and triggers for CO release are
being investigated to prevent CO release until the CORM
reaches the target organ [17,49–57]. The biological activity of
the reaction products after the release of CO is also import-
ant [58]. Further studies are needed.

Because HbCO is thermally and chemically stable in
CO-HbV, it can be stored for long periods of time; it can con-
tinue to release CO in blood circulation for 6 h after adminis-
tration [29,45]. After administration of CO-HbV in blood
circulation and dissociation of CO, the resulting HbV starts to
bind molecular oxygen (O2) reversibly. It is thereby trans-
formed into an O2 carrier. The CO-HbV administration effect-
iveness has been reported in animal models of pulmonary
fibrosis, acute pancreatitis, and colitis [30–32,59], but its
effects on the cranial nerve system have not been fully
investigated.

Considering that CO poisoning causes dysmnesia, one
must examine the effects of CO administration on the hippo-
campal tissue for clinical application of CO-HbV administra-
tion. During this study, many necrotic cells were observed in
the hippocampal tissue specimens of the CO poisoning
group, although few necrotic cells were observed in the CO-
HbV50 group. In the CO-HbV25 group, the proportion of nec-
rotic cells was similar to that of the control group. In other
words, CO-HbV administration is considered to have almost
no adverse effects on the cranial nerve system. Two possible
causes for this can be inferred. The first point is the amount
of CO administered to rats. Although direct comparison is dif-
ficult because of different administration methods, the level
of HbCO after CO inhalation was 69.0 ± 1.9%, whereas the
HbCO level after CO-HbV50 administration was 28.2 ± 1.8%;
after CO-HbV25 administration, it was 12.2 ± 0.5%. Therefore,
one must consider that the group of CO poisoning was
exposed to more CO. The second point is the difference in
administration methods. Some earlier reports have described
inhaled CO as much more toxic than HbCO or CO gas trans-
fused by intraperitoneal injection [60,61]. Actually, CO is
administered intravenously as CO-HbV binds tightly to Hb.
Therefore, less CO is transferred to the tissue. However, CO
administered via the respiratory tract can be expected to pro-
duce high tension in the alveoli and increase dissolved CO in
the blood, resulting in increased amounts of CO transferred
to brain tissue, which is likely to cause CO poisoning. In add-
ition to this study, we are carefully examining the neuro-
logical effect of CO-HbV on the central nervous system by
functional observational battery (FOB). The results will be pre-
sented elsewhere.

Excitotoxicity, oxidative stress, inflammation, and apop-
tosis have been well-established as major pathobiological
mechanisms of ischaemia reperfusion injury [62,63]. Among
these factors, oxidative stress plays a central role in cerebral
ischaemia reperfusion injury [64]. Four main pathways for the

production of reactive oxygen species (ROS) that cause oxida-
tive stress have been identified [65–67].

The first is a pathway involving xanthine oxidase, which is
produced when the tissue becomes ischaemic and generates
ROS from oxygen after reperfusion. The second is a pathway
involving nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase, which is normally inactivated by division
into a core subunit integrated into the cell membrane and
the enzyme in the cytosol. Various factors and inflammatory
cytokines are produced when cells become ischaemic and
activate NADPH oxidase. Activated NADPH oxidase produces
superoxide from oxygen. The third is a pathway involving
mitochondrial disorders. Mitochondria most likely generate
ROS during normal oxidative metabolism. These ROS are
processed by the antioxidant system in mitochondria. When
the mitochondrial microstructure and function are impaired
by ischaemia, even if the metabolism is partially restored dur-
ing reperfusion, the antioxidant system is not rebuilt, result-
ing in increased ROS production. The fourth is a pathway
involving endothelial nitric oxide synthase (NOS). Under nor-
mal conditions, NOS synthesizes nitric oxide (NO); after
ischaemia–reperfusion, NO reacts with superoxide to convert
to highly reactive peroxynitrite.

The ROS produced by the processes described above can
damage vascular endothelial cells, resulting in microcircula-
tory disturbances that eventually engender organ damage.
When CO-HbV is administered, CO suppresses ROS produc-
tion and reduces ischaemia–reperfusion injury by suppressing
NADPH oxidase, inhibiting inflammatory cytokine production,
and improving mitochondrial function [23,25,28,31,68].

This study revealed that cerebral ischaemia resulted from
hypotension and hypovolemia by removing 50% of the circu-
lating blood volume. The ischaemic region was re-perfused
by administering a resuscitation solution 15min later. In the
cerebral ischaemia–reperfusion injury model thus prepared,
hippocampal necrosis in the group resuscitated using CO-
HbV was the mildest. This is true probably because the ear-
lier reported reduction of ischaemia–reperfusion injury in the
kidney, lung, liver, etc. by CO-administration also occurred in
the brain. After releasing CO, the resulting HbV starts to bind
O2 reversibly to become an O2 carrier, which is advantageous
in comparison to the other CO-releasing molecules.

Conclusion

Administration of CO-HbV increased blood HbCO concentra-
tions but did not cause hippocampal necrosis, such as CO
poisoning. Results also show that CO-HbV was effective at
cerebral ischaemia–reperfusion injury after haemor-
rhagic shock.
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