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Abstract: Pterostilbene (PTE) is a natural sterbenoid contained in blueberries that has an antioxidant
effect. In contrast, PTE also generates oxidative stress in cancer cells and provides an antitumor
effect. Here, we examined the potential mechanism of this contrasting effect of PTE using three
gastrointestinal cancer cell lines, namely CT26, HT29, and MKN74. PTE showed a dose-dependent
inhibition of cell proliferation, sphere-forming ability, and stem cell marker expression in all three
cell lines. Furthermore, the cells treated with PTE showed an increase in mitochondrial membrane
potential and an increase in mitochondrial oxidative stress and lipid peroxide. Upon concurrent
treatment with vitamin E, N-acetyl-L-cysteine, and PTE, the PTE-induced mitochondrial oxidative
stress and growth inhibition were suppressed. These findings indicate that PTE induces oxidative
stress in cancer cells, suppresses stemness, and inhibits proliferation. These antitumor effects of PTE
are considered to be useful in cancer treatment.
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1. Introduction

Pterostilbene (PTE), a known nutritional ingredient in blueberries, is a natural dimethylated
analog of resveratrol (RES) [1]. Compared to RES, which is the same stilbenoid, PTE has a higher
bioavailability and a high blood retention for a long duration, which results in stronger effects than
RES [2,3]. Due to its antioxidant effects, PTE is expected to be useful for the prevention of carcinogenesis,
neurodegenerative diseases, inflammatory diseases, hyperlipidemia, and vascular disorders, as well
as for improving diabetes [1,2]. Extensive research has been conducted on the application of PTE
to cancer treatment. PTE inhibits cancer growth, anti-apoptotic survival, metastasis, and cancer cell
stemness; however, the mechanism has not been completely clarified [4,5].

The mechanism of action of PTE revealed so far is diverse. Its actions in cancer include arrest of
cell cycle in S and G2/M phase, induction of apoptosis by reactive oxygen species (ROS) and autophagy,
suppression of matrix metalloproteinase-2/-9 expression and sphere formation, and inhibition of cell
surface fibronectin polymerization, which diminishes the metastatic potential [6–8]. The cancer-related
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factors and signal transduction pathways that PTE suppresses are also diverse, and include Janus
kinase-2/signal transduction and activator of transcription-3, human telomerase reverse transcriptase,
c-Myc, mutant epithelial growth factor receptor, protein kinase B (also known as AKT), multiple
drug resistance-1, sirtuin-1, DNA methyltransferase, extracellular signal-regulated kinase, cyclin
D1, mammalian target of rapamycin, metastasis-associated protein, and nuclear factor-κB [9–17].
In addition, PTE activates autophagy, mutated in the Ataxia telangiectasia mutated/Ataxia telangiectasia
and Rad3-related/Checkpoint kinase-1/p53 pathway, and sirtuin-1 pathway [13,18–20]. Moreover,
PTE affects promoter DNA methylation, histone modifications, and microRNAs, resulting in alteration
of epigenetic gene expression [20].

The current study aimed to elucidate the central mechanism of such diverse actions of PTE.
In particular, PTE has been reported to induce reactive oxidative species (ROS) production, although it
is also known to function as an antioxidant; this discrepancy attracted attention [6]. Therefore, we paid
special attention to the relationship between the antitumor effect of PTE and ROS in this study.

2. Results

2.1. Effect of Pterostilbene (PTE) on Cell Proliferation and Stemness in Gastrointestinal Cancer Cells

The effect of PTE on cell proliferation was examined using three gastrointestinal cancer cell lines,
namely HT29, MKN74, and CT26 (Figure 1A). Dose-dependent growth inhibition was observed in
all three cell lines, including at the low concentration of 10 µM of PTE. Next, we examined the gene
expression of four types of stem cell markers to evaluate the effect of PTE on stemness (Figure 1B).
Expression of the four markers decreased in a dose-dependent manner in all cell lines. The effect
of PTE on stemness was also examined by sphere assay (Figure 2). In both CT26 cells (Figure 2A)
and HT29 cells (Figure 2B), sphere formation was suppressed in terms of the number and size in a
dose-dependent manner.

2.2. Effect of PTE on Generation of Reactive Oxygen Species (ROS)

Intracellular levels of 4-hydroxynonenal (4-HNE) were determined for evaluating ROS generation
by PTE treatment (Figure 3A). In all three cell lines, 4-HNE concentration increased in a PTE
dose-dependent manner. Furthermore, we investigated the gene expression of heme oxygenase
(HO)-1, which is known to be a rescue protein against oxidative stress [21,22] (Figure 3B). In CT26
cells, a high concentration of PTE (100 µM) induced heme oxygenase-1 (HO-1) expression; however,
in HT29 and MKN74 cells, low- and high-concentrations of PTE (10 and 100 µM, respectively) induced
HO-1 expression.

Next, we examined the effect of PTE on mitochondrial membrane potential and mitochondrial
ROS generation (Figure 4). The mitochondrial membrane potential of all cell lines increased in
a PTE-dose-dependent manner (Figure 4A,B). Furthermore, ROS derived from mitochondria also
increased in a PTE-dose-dependent manner (Figure 4A,C).
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Figure 1. Effect of pterostilbene (PTE) on cell proliferation and expression of stem cell markers in 
cancer cell lines. (A) Cell proliferation was assessed by 3-(4,5-dimethylthiazol-2-yl)-5-(3-
carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium,inner salt (MTS) assay. Cells were treated 
with PTE for 48 h. (B) Apoptosis was assessed by ethidium bromide (EtBr) staining. Insert, CT26 cells 
treated with PTE for 48 h were stained with EtBr. Arrow head, apoptosis body. Scale bar, 20 μM. (C) 
mRNA expression of stem cell markers; nucleostemin (NS), CD44, Kip2, and CD133 were examined 
by RT-PCR. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was amplified for loading 
standard. Lower panels were semi-quantification of stem cell marker expression examined by RT-
PCR. Error bar, standard deviation from three independent examinations. Statistical difference was 
calculated by ordinary analysis of variance. * Statistical difference from PTE (0 μM). PTE, 
pterostilbene; IC50, 50% inhibitory concentration. 

Figure 1. Effect of pterostilbene (PTE) on cell proliferation and expression of stem cell markers in cancer
cell lines. (A) Cell proliferation was assessed by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-
2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) assay. Cells were treated with PTE for 48 h.
(B) Apoptosis was assessed by ethidium bromide (EtBr) staining. Insert, CT26 cells treated with
PTE for 48 h were stained with EtBr. Arrow head, apoptosis body. Scale bar, 20 µM. (C) mRNA
expression of stem cell markers; nucleostemin (NS), CD44, Kip2, and CD133 were examined by RT-PCR.
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was amplified for loading standard. Lower panels
were semi-quantification of stem cell marker expression examined by RT-PCR. Error bar, standard deviation
from three independent examinations. Statistical difference was calculated by ordinary analysis of variance.
* Statistical difference from PTE (0 µM). PTE, pterostilbene; IC50, 50% inhibitory concentration.
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Figure 2. Effect of PTE on sphere formation in cancer cell lines. Sphere formation was examined in 
10,000 cells with or without PTE treatment for 7 days. (A) CT26 cells. (B) HT29 cells. Pictures were 
images of phase-contrast microscopy. Error bar, standard deviation from three independent 
examinations. Statistical difference was calculated by ordinary analysis of variance. Scale bar, 50 μm. 
TE, pterostilbene. 
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Figure 2. Effect of PTE on sphere formation in cancer cell lines. Sphere formation was examined
in 10,000 cells with or without PTE treatment for 7 days. (A) CT26 cells. (B) HT29 cells. Pictures
were images of phase-contrast microscopy. Error bar, standard deviation from three independent
examinations. Statistical difference was calculated by ordinary analysis of variance. Scale bar, 50 µm.
TE, pterostilbene.
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Figure 3. Effect of PTE on oxidative stress in cancer cell lines. (A) 4-hydroxynonenal (4-HNE) levels 
were measured by enzyme-linked immunosorbent assay (ELISA). Cells were treated with PTE for 48 
h. (B) mRNA expression of heme oxygenase-1 (HO-1) was examined by RT-PCR. GAPDH was 
amplified as a loading standard. Right panel was semi-quantification of HO-1 expression examined 
by RT-PCR. Error bar, standard deviation from three independent examinations. Statistical difference 
was calculated by ordinary analysis of variance. PTE, pterostilbene; HNE. Hydroxynonenal; HO, 
heme oxygenase. 

Next, we examined the effect of PTE on mitochondrial membrane potential and mitochondrial 
ROS generation (Figure 4). The mitochondrial membrane potential of all cell lines increased in a PTE-
dose-dependent manner (Figure 4A,B). Furthermore, ROS derived from mitochondria also increased 
in a PTE-dose-dependent manner (Figure 4A,C). 

Figure 3. Effect of PTE on oxidative stress in cancer cell lines. (A) 4-hydroxynonenal (4-HNE) levels
were measured by enzyme-linked immunosorbent assay (ELISA). Cells were treated with PTE for 48 h.
(B) mRNA expression of heme oxygenase-1 (HO-1) was examined by RT-PCR. GAPDH was amplified
as a loading standard. Right panel was semi-quantification of HO-1 expression examined by RT-PCR.
Error bar, standard deviation from three independent examinations. Statistical difference was calculated
by ordinary analysis of variance. PTE, pterostilbene; HNE. Hydroxynonenal; HO, heme oxygenase.



Int. J. Mol. Sci. 2020, 21, 9347 5 of 13
Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 6 of 14 

 

 

Figure 4. Effect of PTE on mitochondrial function in cancer cells. Mitochondrial membrane voltage 
and mitochondrial reactive oxidative species (ROS) were examined by tetramethyl rhodamine 
(TMRE) and dihydrorhodamine (DHR), respectively. Cells were treated with PTE for 48 h. (A) 
Fluorescence images of TMRE and DHR. TMRE image was merged with phase-contrasted image. 
Scale bar, 25 μm. (B,C) Semi-quantification of mitochondrial membrane potential (TMRE) and 
mitochondrial ROS (DHR), respectively. Error bar, standard deviation from three independent 
examinations. Statistical difference was calculated by ordinary analysis of variance. PTE, 
pterostilbene; TMRE, tetramethyl rhodamine; ROS, reactive oxidative species; DHR, 
dihydrorhodamine 123; FI, fluorescence intensity. 

Finally, to examine whether PTE-induced ROS generation causes cytotoxicity, cells were treated 
with vitamin E or N-acetyl-L-cysteine (NAC) to suppress ROS generation (Figure 5). The generation 
of mitochondrial ROS was almost completely suppressed to the control levels by vitamin E and NAC 
(Figure 5A,B). The concurrent treatment with PTE and vitamin E or NAC showed that the PTE-
mediated inhibition of cell proliferation was rescued by vitamin E and NAC (Figure 5C). 

Figure 4. Effect of PTE on mitochondrial function in cancer cells. Mitochondrial membrane voltage
and mitochondrial reactive oxidative species (ROS) were examined by tetramethyl rhodamine (TMRE)
and dihydrorhodamine (DHR), respectively. Cells were treated with PTE for 48 h. (A) Fluorescence
images of TMRE and DHR. TMRE image was merged with phase-contrasted image. Scale bar, 25 µm.
(B,C) Semi-quantification of mitochondrial membrane potential (TMRE) and mitochondrial ROS (DHR),
respectively. Error bar, standard deviation from three independent examinations. Statistical difference
was calculated by ordinary analysis of variance. PTE, pterostilbene; TMRE, tetramethyl rhodamine;
ROS, reactive oxidative species; DHR, dihydrorhodamine 123; FI, fluorescence intensity.

Finally, to examine whether PTE-induced ROS generation causes cytotoxicity, cells were treated
with vitamin E or N-acetyl-L-cysteine (NAC) to suppress ROS generation (Figure 5). The generation
of mitochondrial ROS was almost completely suppressed to the control levels by vitamin E and
NAC (Figure 5A,B). The concurrent treatment with PTE and vitamin E or NAC showed that the
PTE-mediated inhibition of cell proliferation was rescued by vitamin E and NAC (Figure 5C).
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Figure 5. Effect of vitamin E on PTE-induced oxidative stress in cancer cell lines. Cells were treated 
with or without PTE (10 μM) and/or vitamin E (10 μM) and/or N-acetyl-L-cysteine (NAC) (5 mM) for 
48 h. (A) Mitochondrial ROS was assessed by MitoROS (red color). MitoROS image was merged with 
phase-contrasted image. (B) Cell proliferation was assessed by MTS. (C) Semi-quantification of 
mitochondrial ROS. C, control; P, PTE; PE, PTE+vitamin E; PN, PTE+NAC. Error bar, standard 
deviation from three independent examinations. Statistical difference was calculated by ordinary 
analysis of variance. Scale bar, 25 μm. PTE, pterostilbene; ROS, reactive oxidative species; FI, 
fluorescence intensity; NAC, N-acetyl-L-cysteine; MTS, 3-(4,5-dimethylthiazol-2-yl)-5-(3-
carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium. 

3. Discussion 

In our study, PTE treatment resulted in a decrease in stemness along with an increase in 
mitochondrial ROS production in all three gastrointestinal cancer cell lines that were tested. 
Previously, it was reported that PTE suppresses the expression of CD44, c-Myc, and cyclin D, and 
hedgehog/AKT signal, which preferentially damages cancer stem cells [23]. However, the mechanism 
is not yet fully understood. RES, which has a similar structure to PTE, suppresses Wnt/beta-catenin 
and reduces stemness in breast cancer cells [5]. In addition, RES has been reported to promote 
argonaute2 expression and suppress tumor stem cells by inducing tumor suppressor microRNA 
expression [24]. PTE has been suggested to have a similar mechanism. In addition, PTE suppresses 
the stat3 pathway in HeLa cells and reduces stemness, and it displays a stronger effect than RES [6]. 

In our study, PTE induced strong ROS production in all three cancer cells. While low 
concentrations of ROS promote stemness and epithelial-mesenchymal transition in cancer cells 
[25,26], high concentrations induce apoptosis [27,28]. PTE has been suggested to induce high levels 
of ROS, leading to cell death, especially in cancer stem cells that show undifferentiated properties, 
but not in differentiated cells. This study has been conducted in order to prove the suppression of 
tumor cells by low concentration of PTE, such as supplements. The antitumor effect of even 10 μM of 
PTE suggests that the safe and effective therapeutic application of PTE is possible. 

Figure 5. Effect of vitamin E on PTE-induced oxidative stress in cancer cell lines. Cells were treated
with or without PTE (10 µM) and/or vitamin E (10 µM) and/or N-acetyl-L-cysteine (NAC) (5 mM) for
48 h. (A) Mitochondrial ROS was assessed by MitoROS (red color). MitoROS image was merged with
phase-contrasted image. (B) Cell proliferation was assessed by MTS. (C) Semi-quantification of mitochondrial
ROS. C, control; P, PTE; PE, PTE+vitamin E; PN, PTE+NAC. Error bar, standard deviation from three
independent examinations. Statistical difference was calculated by ordinary analysis of variance. Scale bar,
25µm. PTE, pterostilbene; ROS, reactive oxidative species; FI, fluorescence intensity; NAC, N-acetyl-L-cysteine;
MTS, 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium.

3. Discussion

In our study, PTE treatment resulted in a decrease in stemness along with an increase in
mitochondrial ROS production in all three gastrointestinal cancer cell lines that were tested. Previously,
it was reported that PTE suppresses the expression of CD44, c-Myc, and cyclin D, and hedgehog/AKT
signal, which preferentially damages cancer stem cells [23]. However, the mechanism is not yet fully
understood. RES, which has a similar structure to PTE, suppresses Wnt/beta-catenin and reduces
stemness in breast cancer cells [5]. In addition, RES has been reported to promote argonaute2 expression
and suppress tumor stem cells by inducing tumor suppressor microRNA expression [24]. PTE has
been suggested to have a similar mechanism. In addition, PTE suppresses the stat3 pathway in HeLa
cells and reduces stemness, and it displays a stronger effect than RES [6].

In our study, PTE induced strong ROS production in all three cancer cells. While low
concentrations of ROS promote stemness and epithelial-mesenchymal transition in cancer cells [25,26],
high concentrations induce apoptosis [27,28]. PTE has been suggested to induce high levels of ROS,
leading to cell death, especially in cancer stem cells that show undifferentiated properties, but not in
differentiated cells. This study has been conducted in order to prove the suppression of tumor cells by
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low concentration of PTE, such as supplements. The antitumor effect of even 10 µM of PTE suggests
that the safe and effective therapeutic application of PTE is possible.

We found that PTE markedly enhanced mitochondrial ROS production. To date, it has been
reported that PTE causes a decrease in mitochondrial membrane potential, an increase in oxidative
stress, and an alteration in mitochondrial calcium ion concentration in cancer cells, resulting
in induction of apoptosis [14,29–31]. The mechanism of PTE on the mitochondrial membrane
potential is not clear. RES, the same stilbenoid as PTE, causes voltage-dependent anion channel
(VDAC) dephosphorylation in cardiomyocytes [32], inhibits mitochondrial membrane permeability,
and suppresses mitochondrial injury and apoptosis [32]. On the contrary, VDAC phosphorylation
enhances mitochondrial permeability and induces apoptosis [33].

It is possible that PTE may elicit a similar effect to that of RES on VDAC-mediated
mitochondrial membrane potential. In our study, mitochondrial potential was enhanced by PTE,
which contradicts many reports [14,34]. Unlike apoptosis, in which the mitochondrial membrane
potential decreases, the involvement of ferroptosis can explain the increase in mitochondrial membrane
potential. In ferroptosis, the inducer elastin opens VDAC, promotes mitochondrial hyperpolarization,
and increases ROS production [35,36]. Induction of cell death in cancer cells by PTE is reported to
be oxidative stress-induced apoptosis [14,29,31]. However, PTE-induced cell death is only partially
rescued by apoptosis-inhibiting peptides, and mechanisms other than apoptosis are thought to be
involved [37]. From these, it is suggested that cell death by PTE might be a mixture of apoptosis
and ferroptosis.

Notably, ferroptosis is induced by lipid peroxide [38], and our data also show an increase in lipid
peroxide 4-HNE upon PTE treatment. Furthermore, ferroptosis is suppressed by the conversion of
peroxyl radicals to peroxides by vitamin E and coenzyme Q10 [38]. In our experiment, vitamin E
and NAC reduced the cytotoxicity of PTE. Vitamin E removes singlet oxygen and hydroxyl radicals,
and suppresses lipid peroxide production, whereas NAC is a precursor of glutathione and broadly
regulates redox. Both antioxidants suppressed PTE-induced cytotoxicity. We determined ROS with
4-HNE, dihydrorhodamine (DHR) 123, and mitoROS. 4-HNE, DHR123, and mitoROS detect lipid
peroxide, hydrogen peroxide, and superoxide, respectively, and both were increased by PTE and
decreased by vitamin E and NAC. These results suggest that PTE produces various types of ROS.

The strongest inducer of ferroptosis is elastin, but cysteine deficiency also induces ferroptosis
via lipid peroxidation [35,39]. PTE promotes the dissociation of Kelch-like ECH-associated protein
(Keap)-1 and NF-E2-related factor 2 (Nrf2), and promotes the expression of HO-1 and NAD(P)H:quinine
oxidoreductase, glutamate-cysteine ligase catalytic subunit, and glutamate-cysteine ligase modifier,
which are downstream target genes [40]. Our data also showed enhanced HO-1 expression upon
PTE treatment, suggesting mediation of the Keap-1/Nrf2 pathway. Glutathione-SH consumption
due to glutamate-cysteine ligase activation and increased ROS production might cause a decrease in
intracellular cysteine and induce ferroptosis.

In our study, PTE showed a strong inhibitory effect on cancer stem cells. PTE suppressed
expression stemness marker genes and sphere formation. Thus, PTE is expected to be effective
for targeting cancer stem cells [5]. However, it is important to consider the potential effects of
PTE on normal cells. PTE activates the Sirtuin-1/Forkhead boxO1/p53 pathway in skeletal muscle
cells and reduces oxidative stress damage and mitochondrial dysfunction associated with ischemia
reperfusion [19]. PTE induces manganese-dependent superoxide dismutase expression through
extracellular-signal-regulated kinase-5/Histone deacetylase-5 pathway and enhances oxidative stress
tolerance in vascular endothelial cells [41]. Oxidative stress is also suppressed in hepatocytes [42]. HO-1
expression induced by PTE reduces the oxidative stress damage associated with ischemia reperfusion
in nerve cells [43]. Furthermore, PTE suppresses adipocyte differentiation of 3T3L cells and retains
its stemness [44]. As described above, PTE acts reducing oxidative stress and protects stem cells in
normal tissues, exhibiting a function opposite to that observed in cancer tissues.
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As a factor that causes a difference in the action of PTE, as described above, on cancer and normal
tissue, qualitative differences in mitochondria, which are the major organelles of ROS production,
are emphasized. It is considered that the mitochondria in cancer cells are aberrant. An imbalance
in mitochondrial electron transport protein expression is seen in many cases of liver cancer [45].
We also previously reported that the promotion of oxidative phosphorylation by lauric acid induces
high levels of oxidative stress [46]. Lauric acid, a medium-chain fatty acid, enhances oxidative
phosphorylation, which produces ROS in cancer cells with imbalance in mitochondrial electron
transport protein expression [46]. In contrast, normal cells, such as lymphocytes and myocardial
cells, which carry mitochondrial electron transport proteins, are not induced in ROS differently from
cancer cells [46,47]. These findings suggest that PTE might provide ROS in cancer cells with a mutated
electron transport system, whereas PTE might reduce ROS in normal cells with a normal electron
transport system. Mutations in mitochondrial DNA in cancer cells are associated with suppression of
oxidative phosphorylation and increased oxidative stress [48,49]. In particular, among mitochondrial
DNA, mutations in MtCOI and MtND6 affect the assembly of respiratory complexes [49].

HO-1 expression level is associated with resistance to ROS [22]. In our data, the constitutive
expression level of HO-1 is higher in HT29 and MKN74 cells than that in CT26 cells and HO-1
expression was induced by low and high concentrations (10 and 100 µM, respectively) of PTE in the
two cell lines. In contrast, CT26 cells showed low constitutive expression of HO-1 and were induced at
high concentration of PTE. Interestingly, HO-1 expression level was associated with mitochondrial
membrane potential. Nrf2 was linked to mitochondrial membrane potential [50] and Nrf2 induces HO-1
expression [51]. As discussed earlier, PTE is thought to increase mitochondrial membrane potential in
a ferroptosis-related situation, suggesting that it might induce HO-1 expression via Nerf2 activation.

Here, our study confirmed that PTE exerts an excellent antitumor effect, suggesting the involvement
of ferroptosis in its mechanism. Especially, the antitumor effect shown in such low-dose PTE (10 µM)
suggests that safe and effective therapeutic application of PTE is possible. In the future, it is expected
that a more detailed elucidation of its mechanism of action will enable the effective application of PTE
to cancer treatment.

4. Materials and Methods

4.1. Cell Lines and Reagents

HT29 human carcinoma cell lines were purchased from Dainihon Pharmacy Co. (Tokyo, Japan).
MKN74 human gastric carcinoma cell line was obtained from the Japanese Collection of Research
Bioresources (JCRB; Osaka, Japan). CT26 murine colon carcinoma cell line was gifted by Professor I. J.
Fidler (MD Anderson Cancer Center, TX, USA). Cells were cultured in Dulbecco’s modified Eagle’s
medium supplemented with 10% fetal bovine serum at 37 ◦C in 5% CO2. PTE (Tokyo Chemical Industry
Co., Ltd., Tokyo, Japan) and vitamin E (Sigma-Aldrich Inc., St. Louis, MO, USA), N-acetyl-L-cysteine
(NAC, Sigma) were purchased. Cells were treated with PTE (10, 50, and 100 µM).

Apoptosis was assessed by staining with EtBr (Sigma). From 200 cells observed under fluorescence
microscopy, apoptotic body was counted.

Tetramethyl rhodamine (TMRE), dihydrorhodamine 123 (DHR), and mitoROS were purchased
(Sigma). Semi-quantification of fluorescence images was performed by using the luminance
measurement mode of fluorescence microscope (Keyence Corp., Osaka, Japan).

4.2. MTS (3-(4,5-Dimethylthiazol-2-yl)-5-(3-Carboxymethoxyphenyl)-2-(4-Sulfophenyl)-2H-Tetrazolium) Assay

MTS assays were performed using a Celltiter 96 Aqueous One Solution Cell Proliferation Assay
kit (Promega Biosciences, Inc., San Louis Obispo, CA, USA). The plates were read on a multiscan FC
microplate photometer at 490 nm. The MTS value in cells cultured with the control oligonucleotide
was used as the control.
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4.3. Sphere Assay

Cells (10,000 cells per well) were seeded on uncoated bacteriological 35-mm dish (Coning Inc.,
Coning, NY, USA) with 3D Tumorsphere Medium XF (Sigma). Cells were cultured with or without
PTE (10, 50, 100 µM). After 7 days, sphere images were captured on a computer and the sphere size
was measured using NIH ImageJ software (version 1.52, NIH, Bethesda, MD, USA). We counted the
number of all spheres in the culture well. The sphere size designated was a mean of all spheres in
the well.

4.4. Reverse Transcription-Polymerase Chain Reaction (RT-PCR)

To assess human and murine mRNA expression, RT-PCR was performed with 0.5 µg total RNA
extracted using a RNeasy kit from the three cell lines (Qiagen, Germantown, MD, USA). The primer
sets are listed in Table 1 and were synthesized by Sigma Genosys (Ishikari, Japan). PCR products were
electrophoresed using a 2% agarose gel and stained with ethidium bromide. The GAPDH mRNA was
also amplified for use as an internal control. Semi-quantification of RT-PCR was performed by using
ImageJ (NIH).

Table 1. Primer sets for RT-PCR.

Gene Name Species Gene Bank ID Primer Sequence

cd44 mouse M27130.1 TGGATCCGAATTAGCTGGAC
AGCTTTTTCTTCTGCCCACA

cd133 mouse BC028286.1 GAAAAGTTGCTCTGCGAACC
TCTCAAGCTGAAAAGCAGCA

kip2 mouse U22399.1 CTGACCTCAGACCCAATTCC
CTCAGAGACCGGCTCAGTTC

ho-1 mouse NM_010442.2 CACGCATATACCCGCTACCT
CCAGAGTGTTCATTCGAGCA

Nucleostemin mouse BC037996.1 ATGTGGGGAAAAGCAGTGTC
TGGGGGAGTTACAAGGTGAG

gapdh mouse NM_001289726.1 AACTTTGGCATTGTGGAAGG
ACACATTGGGGGTAGGAACA

CD44 human FJ216964.1 AAGGTGGAGCAAACACAACC
AGCTTTTTCTTCTGCCCACA

CD133 human BC012089.1 TTGTGGCAAATCACCAGGTA
TCAGATCTGTGAACGCCTTG

Kip2 human AB012955.1 CCCGGCTCACTAAGTCAGAG
AGATCCGGATGTGGAAAGTG

Nucleostemin human BC001024.2 ATTGCCAACAGTGGTGTTCA
AATGGCTTTGCTGCAAGTTT

GAPDH human BC025925.1 GAGTCAACGGATTTGGTCGT
TTGATTTTGGAGGGATCTCG

4.5. Protein Extraction

Whole-cell lysates were prepared as previously described using 0.1% SDS-added RIPA-buffer
(Thermo Fisher Scientific, Tokyo, Japan) [52]. Protein assay was performed using a Protein Assay
Rapid Kit (Wako Pure Chemical Corporation, Osaka, Japan).

4.6. Enzyme-Linked Immunosorbent Assay (ELISA) and Fluorometric Assay

ELISA kit was used to measure the concentration of 4-hydroxynonenal (HNE) (Abcam, Cambridge,
MA, USA). The assay was performed according to the manufacturer’s instructions, and whole-cell
lysates were used for the measurements.
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4.7. Statistical Analysis

Statistical significance was calculated using a two-tailed Fisher’s exact test, an ordinary analysis of
variance (ANOVA), and InStat software (version 3.0, GraphPad, Los Angeles, CA, USA). A two-sided
p-value of < 0.05 was considered to indicate statistical significance.
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Abbreviations
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ROS Reactive oxygen species
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