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Abstract

Objectives

To identify risk factors and clinical outcomes in patients with bacteremia due to extended-

spectrum beta-lactamase (ESBL) or carbapenemase-producing Escherichia coli, as well as

to determine the prevalence and genetic background of such isolates.

Methods

Case control study was performed with patients with E. coli bacteremia between January

2008 and May 2013 (n = 115) at a tertiary university hospital in Japan. Cases had ESBL-pro-

ducing E. coli (ESBL-EC) whereas controls had non-ESBL-producing E. coli (non-ESBL-

EC) isolates. A retrospective chart review was performed to identify risk factors and clinical

outcomes. Isolates were characterized by antimicrobial susceptibility testing, polymerase

chain reaction analysis for beta-lactamase genes, and multi-locus sequence typing.

Results

Of 115 unique cases of E. coli bacteremia, 30 (26.1%) were due to ESBL-EC and three

(2.6%) were due to carbapenemase-producing E. coli. All three carbapenemase-producing

E. coli isolates were IMP-6 and concurrently produced ESBL (ESBL/IMP-6-EC). ESBL-EC

isolates showed multidrug resistance. Of the ESBL-EC isolates, CTX-M-27 was the most

prevalent (33.3%), followed by CTX-M-14 (30%). Multi-locus sequence typing revealed that

19 (63.3%) isolates were ST131. The multivariate analysis identified nursing home-associ-

ated infections and antibiotic administration in the preceding 30 days as risk factors for

ESBL-EC bacteremia. The 14-day mortality non-ESBL-EC, ESBL-EC, and ESBL/IMP-6-EC

was 4.7% (4/85), 20% (6/30), and 66.7% (2/3), respectively.
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Conclusions

CTX-M-27, CTX-M-14, and ST131 were the most prevalent ESBL-EC isolates from bacter-

emic patients in a Japanese hospital. Further studies with larger sample sizes are warranted

to investigate the clinical significance of ESBL-EC and ESBL/IMP-6-EC.

Introduction

Escherichia coli is a common commensal organism in the intestinal tracts of humans and ani-

mals; it causes a wide range of diseases. Resistance against various antimicrobials, including

the cephalosporins, fluoroquinolones, and even the carbapenems, is increasing worldwide [1].

The genetic background of such resistance has been extensively studied and varies according

to geographic location and time. The E. coli sequence type (ST) 131 C2/H30Rx clade with the

blaCTX-M-15 gene is largely responsible for the global dissemination of extended-spectrum

beta-lactamase-producing E. coli (ESBL-EC) [2]. In Japan, Matsumura et al. evaluated cases of

bacteremia due to ESBL-EC between 2005 and 2010 and found the blaCTX-M-14 gene to be the

most common, followed by blaCTX-M-15 and blaCTX-M-2 [3]. They recently reported on the

global emergence and increased prevalence of the E. coli ST131 clade with the blaCTX-M-27

gene, named the C1-M27 clade [4]. Class A carbapenemases such as Klebsiella pneumoniae car-

bapenemase (KPC), and class B metallo-beta-lactamases such as the New Delhi Metallo-beta-

lactamase (NDM), are a problem worldwide; however, these are rarely found in Japan where

other types of metallo-beta-lactamases, such as IMP-6, are dominant [5, 6]. Although the inci-

dence is low, Yamamoto et al. recently reported that 14.9% of long-term hospitalized patients

harbored carbapenem-resistant Enterobacteriaceae, 95.7% of which produced IMP-6 [7–9].

The clinical impact of IMP-6-producing organisms has not yet been reported.

In this study, we aimed to identify the prevalence and genes associated with ESBL-EC and

carbapenemase-producing E. coli, as well as to identify the risk factors and outcomes of

patients with bacteremia caused by these organisms.

Materials and methods

Study setting and study design

This study was conducted at Nara Medical University, a tertiary care hospital with 927 beds in

Nara prefecture, located in central Japan. All patients aged 18 years or older with at least one

positive blood culture for E. coli between January 1, 2008, and May 31, 2013, were identified

via the clinical microbiology laboratory’s computerized database. A case-control study design

was used to determine risk factors for the ESBL-EC bacteremia group. The case group com-

prised patients with ESBL-EC bacteremia and the control group comprised patients with non-

ESBL-EC bacteremia. Only the first episode of bacteremia was included for each patient. Ethi-

cal approval was obtained from the Institutional Review Board of Nara Medical University

(No. 802).

Microbiological analysis

The clinical microbiology laboratory used the BacT/Alert 3D blood culture system (Sysmex

bioMérieux, Tokyo, Japan) and identification of bacterial isolates was performed using the

VITEK1 2 system (Sysmex bioMérieux, Tokyo, Japan). The minimum inhibitory concentra-

tion of various antimicrobial agents was determined using the agar dilution method and was

ESBL- and carbapenemase-producing E. coli
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interpreted according to the Clinical and Laboratory Standards Institute’s (CLSI) guidelines

[10]. Isolates were reported as being susceptible to flomoxef at a minimum inhibitory

concentration of� 8 μg/mL, in reference to the CLSI breakpoint for moxalactam (� 8 μg/

mL). Screening for ESBL production was performed using the VITEK1 2 Advanced Expert

System according to the manufacturer instructions; ESBL production was confirmed using

the combined disk test according to CLSI guidelines [10]. Bacterial DNA was isolated

using the QIAamp DNA Mini kit (Qiagen, Hilden, Germany). Polymerase chain reaction

analyses for the detection of TEM-, SHV-, CTX-M-type beta-lactamase genes, and plasmid-

mediated AmpC beta-lactamases (p-AmpC) were performed as previously described [11, 12].

Isolates displaying non-susceptibility to imipenem or meropenem (minimum inhibitory

concentration > 1 μg/mL) were analyzed to determine the presence of carbapenemases, using

primers as previously described [6].

Clinical analysis

Bacteremia was categorized as nosocomial, healthcare-associated, or community acquired, in

accordance with the criteria set out by Friedman et al Nursing home-associated infections

comprised those occurring in patients residing in nursing homes or who attended day care

within 30 days of the onset of bacteremia [13]. The Charlson comorbidity index was used to

categorize comorbid conditions, identified by reviewing the patients’ medical charts [14].

Other clinical information included age; sex; date of onset of nosocomial infection; whether

antibiotic agents, general anesthesia, chemotherapy, radiation therapy, or immunosuppressive

agents such as glucocorticoids were administered within 30 days of the date of onset of bacter-

emia; intensive care unit admission at the time of bacteremia; source of infection (urinary

tract, intra-abdominal, catheter-associated, soft-tissue, pneumonia, or unknown); presence of

indwelling devices (peripheral or central venous catheters, urinary catheter, drainage tube(s),

nasogastric tube, tracheotomy tube, and devices related to oxygen inhalation, mechanical ven-

tilation, or continuous hemodiafiltration). Inappropriate antimicrobial treatment was defined

as the use of an antimicrobial agent to which the pathogen being treated is resistant.

Statistical analysis

The statistical analysis was performed using Stata software version 13 (Stata Corporation

College Station, TX, USA). For the univariate statistical analysis of dichotomous outcomes,

Fisher’s exact test and logistic regression analysis were used to compare categorical and con-

tinuous explanatory variables, respectively. Odds ratios (ORs) and 95% confidence intervals

(CIs) were calculated to determine the strength of any associations that emerged. P values <

.05 were considered statistically significant, and all probabilities were two-tailed. In the risk

factor analysis for ESBL-EC bacteremia, multivariate logistic regression analysis was per-

formed with nosocomial infection, nursing home-associated infection, and used antibiotic(s)

within 30 days. It was thought that nosocomial and nursing home-associated infection might

be associated with ESBL-producing organism acquisition while the last factor (used antibiotic

(s) within 30 days) may be associated with ESBL-producing organisms’ selection. These fac-

tors have been shown to be clinically significant variables of ESBL-producing organisms in

previous studies [15–17]. The number of variables included in the multivariate analysis was

restricted to 10% of the number of ESBL-producing isolates [18]. In the risk factor analysis

for 14-day mortality, a multivariate analysis could not be performed because there were only

ten deaths.

ESBL- and carbapenemase-producing E. coli
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Results

Microbiology results

During the study period, there were 115 unique cases of bacteremia caused by E. coli: 30

(26.1%) were due to ESBL-EC and 85 (73.9%) were due to non-ESBL-EC. The antibiotic sus-

ceptibility patterns of all isolates are shown in Table 1. Among the cases, a high proportion was

resistant to piperacillin-tazobactam, cefmetazole, gentamicin, tobramycin, levofloxacin, cipro-

floxacin, and trimethoprim-sulfamethoxazole. Notably, 83.3% of cases were resistant to cipro-

floxacin and 50% were resistant to trimethoprim-sulfamethoxazole, compared with 15.3% and

17.6% of controls, respectively.

The ST and distribution of antimicrobial resistance genes of the ESBL-EC isolates are

shown in Table 2. CTX-M-27 was most prevalent, followed by CTX-M-14. Three isolates pos-

sessed both CTX-M (two CTX-M-2 and one CTX-M-27) and IMP-6 genes. ST131 was the

Table 1. Antimicrobial resistance of ESBL-EC and non-ESBL-EC isolates.

Antimicrobial agent ESBL-EC (n = 30) Non-ESBL-EC (n = 85) P value

Piperacillin-tazobactam 5 (16.7) 1 (1.2) .005

Cefmetazole 5 (16.7) 2 (2.4) .01

Flomoxef 1 (3.3) 1 (1.2) .46

Imipenem 1 (3.3) 0 .26

Meropenem 1 (3.3) 0 .26

Gentamicin 12 (40) 5 (5.9) < .001

Tobramycin 12 (40) 5 (5.9) < .001

Amikacin 1 (3.3) 0 .26

Levofloxacin 24 (80) 14 (16.5) < .001

Ciprofloxacin 25 (83.3) 13 (15.3) < .001

Fosfomycin� 0 3 (3.5) .57

Trimethoprim-sulfamethoxazole 15 (50) 15 (17.6) < .001

Data are presented as n (%). ESBL-EC, extended-spectrum beta-lactamase-producing E. coli; non-ESBL-EC, non-extended-spectrum beta-lactamase-producing E. coli.
� Clinical Laboratory Standards Institute breakpoint is available for urine isolates only.

https://doi.org/10.1371/journal.pone.0202276.t001

Table 2. Distribution of ESBL-EC antimicrobial resistance genes and sequence types.

Genotype (n = 30 cases) Number (%) of isolates MLST (number of isolates)

CTX-M-27 10 (33.3) ST131 (8), ST2179 (1), ST2750 (1)

CTX-M-14 7 (23.3) ST131 (5), ST62 (1), ST405 (1)

CTX-M-2 &IMP-6 2 (6.7) ST131 (1), ST2750 (1)

CTX-M-2 2 (6.7) ST131 (2)

CTX-M-14 & CMY-2 2 (6.7) ST95 (1), ST648 (1)

SHV-12 1 (3.3) ST362 (1)

Novel CTX-Ma 1 (3.3) ST648 (1)

CTX-M-61 1 (3.3) ST131 (1)

CTX-M-27 & IPM-6 1 (3.3) ST131 (1)

CTX-M-19 1 (3.3) ST131 (1)

CTX-M-15 2 (3.3) ST847 (1), ST2179 (1)

MLST, multi-locus sequence typing; ESBL-EC, extended-spectrum beta-lactamase producing E. coli.
a GenBank accession number: KY964289

https://doi.org/10.1371/journal.pone.0202276.t002
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most prevalent ST (19/30, 63.3%). CTX-M-27 (8/19, 42.1%) and CTX-M-14 (5/19, 26.3%)

were the most common ESBL-associated genes. Two of the three CTX-M+IMP-6 isolates were

ST131.

Clinical results

The patients’ demographic characteristics and risk factors for ESBL-EC bacteremia are listed

in Table 3. The following variables were identified as risk factors for ESBL-EC bacteremia in

the univariable analysis: younger age; community-onset, nosocomial, and nursing home-asso-

ciated infections; administration of antibiotic, general anesthetic, or immunosuppressive

agents within 30 days of bacteremia onset; connective tissue disease, paraplegia or hemiplegia,

dementia, and leukemia; a higher Charlson comorbidity index; and urinary or central venous

catheterization. In the multivariate analysis, nursing home-associated infection (OR, 7.98; 95%

CI, 1.56–40.9) and antibiotic administration within the preceding 30 days (OR, 5.11; 95% CI,

1.61–16.2) were independent risk factors for ESBL-EC bacteremia; however nosocomial infec-

tion (OR, 1.28; 95% CI, 0.4–4.17) was not. We quantified the severity of multicollinearity

among the predictor variables in the regression analysis by calculating the variance inflation

factor (VIF). The VIF values were 1.48, 1.05, and 1.44 for nosocomial and nursing home-asso-

ciated infections, and used antibiotics within 30 days, respectively. The fact that these variables

were sufficiently smaller than 5.0 means that each predictor variable was uncorrelated with the

other predictors and the multicollinearity among them was vanishingly small.

Overall, 14 day-mortality was 8.7% (10/115) with 4.7% (4/85) for non-ESBL-EC, 14.8% (4/

27) for ESBL-only-EC, 20% (6/30) for ESBL-EC, and 66.7% (2/3) for ESBL/IMP-6-EC. Table 4

shows the results of the univariate analysis of 14-day mortality. Multiple factors, such as the

use of inadequate antibiotic therapy within 24 hours; prior use of any antibiotic and specifi-

cally of any carbapenem; infection arising from the urinary tract, soft-tissue, or an unknown

source; chronic liver disease; central venous catheterization; presence of a nasogastric tube;

mechanical ventilation; ESBL-EC and ESBL/IMP-6-EC were also significantly associated with

14-day mortality.

Discussion

Worldwide, the prevalence of ESBL-EC has varied widely and is increasing. Matsumura et al.

found that 13.9% of 706 cases of E. coli bacteremia occurring from 2005–2012 were due to

ESBL-producing strains, while Namikawa et al. recently reported that 24.0% of 129 cases of

E. coli bacteremia from 2011–2015 were due to ESBL-EC [3, 19]. In our study, a total of 115

unique cases of E. coli bacteremia were identified and, of these, 30 (26.1%) were caused by

ESBL-EC. The proportion of carbapenemase-producing E. coli was 2.6%, and all cases pro-

duced IMP-6. The prevalence of carbapenemase-producing E. coli among all cases of E. coli
bacteremia in Japan has not previously been reported. In a recent analysis of 4875 Enterobac-

teriaceae isolates collected in Japan between 2010 and 2013, Ohno et al. reported that the prev-

alence of IMP-6-producing strains ranged from 0.08% to 0.92%, depending on the species and

biologic specimen from which the isolates were cultured [20]. Because IMP-6-producing iso-

lates typically exhibit low-level resistance to the carbapenems, they are often overlooked; how-

ever, it is important that these strains be continuously monitored using highly sensitive tests

[6].

Multilocus sequence typing revealed that 19 of the 30 ESBL-EC isolates (63.3%) were

ST131. The global increase in ESBL-EC is associated with a pandemic clonal group known as

ST131 that includes CTX-M-type-producing ESBLs [6]. It is known that ST131 E. coli sequen-

tially acquires antimicrobial resistance genes and develops resistance to multiple classes of

ESBL- and carbapenemase-producing E. coli
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Table 3. Univariate and multivariate analysis of risk factors associated with ESBL-EC compared with non-ESBL-EC isolates in bacteremic patients.

Variable ESBL-EC Non-ESBL-EC Univariate analysis Multivariate analysis

(n = 30) (n = 85) OR (95% CI) P value OR (95% CI) P value

Age, mean (SD), y 66.5 (17.2) 72.3 (10.8) 0.97 (0.94–1.00) .04

Sex: male 19 37 2.22 (0.88–5.87) .09

Healthcare-associated infection 9 31 0.75 (0.27–1.97) .66

Nosocomial infection 21 40 2.63 (1.00–7.25) .04 1.28 (0.40–4.17) .678

Nursing home-associated infection 6 3 6.69 (1.31–44.50) .009 7.98 (1.56–40.9) .013

Days to onset of nosocomial infection, median (IQR) 24 (15–79) 28 (12–50) 1.00 (0.99–1.01) .63

Used antibiotic(s) within 30 days 22 28 5.51 (2.05–16.22) < .001 5.11 (1.61–16.2) .006

General anesthesia within 30 days 7 6 3.94 (1.02–15.8) .04

Chemotherapy within 30 days 2 11 0.48 (0.05–2.43) .51

Radiation within 30 days 1 3 0.94 (0.02–12.29) >.99

Immunosuppressants within 30 days 14 21 2.64 (1.01–6.93) .04

Intensive care unit admission before infection 8 10 2.70 (0.82–8.70) .08

Source of infection:

Urinary tract 13 49 0.56 (0.22–1.41) .20

Intra-abdominal 10 22 1.43 (0.51–3.81) .48

Catheter-associated 2 2 2.93 (0.20–42.2) .28

Soft-tissue 1 1 2.86 (0.04–229.6) .46

Pneumonia 0 4 0 (0–4.32) .57

Unknown 4 7 1.71 (0.34–7.37) .47

Comorbid condition(s):

Malignancy 11 38 0.72 (0.27–1.82) .52

Diabetes mellitus 8 19 1.26 (0.42–3.56) .63

Connective tissue disease 7 3 8.12 (1.69–52.53) .003

Cerebral vascular disease 5 9 1.68 (0.40–6.23) .52

Peripheral vascular disease 3 4 2.23 (0.31–14.12) .37

Paraplegia or hemiplegia 6 2 10.11 (1.67–108.70) .004

Dementia 6 1 20.3 (2.30–971.50) .001

Cardiovascular disease 5 15 0.93 (0.24–3.08) >.99

Chronic liver disease 4 13 0.85 (0.19–3.10) >.99

Renal insufficiency 4 13 0.85 (0.19–3.10) >.99

Chronic pulmonary disease 5 8 1.91 (0.45–7.37) .32

Leukemia 4 0 Inf (1.99–Inf) .004

Lymphoma 2 2 2.93 (0.20–42.19) .28

Peptic ulcer 2 0 Inf (0.54–Inf) .07

Charlson comorbidity index, mean (SD) 4.2 (2.2) 2.7 (2.1) 1.34 (1.11–1.62) .003

Charlson comorbidity index >2 21 33 3.63 (1.39–10.18) .005

Indwelling devices:

Peripheral catheterization 10 17 1.99 (0.70–5.50) .21

Urinary catheterization 10 11 3.32 (1.10–10.07) .03

Oxygen inhalation 7 11 2.05 (0.60–6.56) .24

Central venous catheter 7 4 6.04 (1.39–30.70) .007

Drainage tube 2 6 0.94 (0.09–5.66) >.99

Tracheotomy tube 2 2 2.93 (0.20–42.19) .28

Nasogastric tube 2 2 2.93 (0.20–42.19) .28

Mechanical ventilation 2 2 2.963(0.20–42.19) .28

(Continued)
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antibiotics, including aminoglycosides, fluoroquinolones, and sulfamethoxazole-trimethoprim

[2]. This could explain the high rates of multi-class antibiotic resistance among the ESBL-EC

isolates in our study. Matsumura et al. recently reported an increase in CTX-M-27-producing

ST131 isolates in Japan, named C1-M27 [4]. A third of our ESBL isolates produced CTX-M-

27, and 80% of these were ST131. The second most prevalent CTX-M was CTX-M-14, 71% of

which were ST131. Of 115 isolates, three (2.6%) produced both IMP-6 and either CTX-M-2 or

CTX-M-27; and two were ST131. E. coli strains producing both IMP-6 and CTX-M-2 have

been reported, although this is the first study to report an E. coli isolate producing both IMP-6

and CTX-M-27 [21]. This finding alerts us to the future risk that C1-M27 might acquire

higher-level antimicrobial resistance genes, such as carbapenemase-resistance genes.

As reported, many factors are associated with infection or colonization by ESBL-EC [6, 7, 9,

10, 19, 20, 22–24]. By comparing ESBL-EC bacteremia and non ESBL-EC bacteremia, we iden-

tified risk factors of ESBL-EC in patients with EC bacteremia. At univariate analysis, multiple

factors were found to be associated with ESBL-EC; however, at multivariate analysis, we chose

three representative risk factors due to sample size constraints. These three factors were tradi-

tionally regarded as being important for the isolation of multidrug resistant organisms [15–

17]. Historically, multidrug resistant organisms are isolated from severely ill, hospitalized

patients in intensive care [23]. However, community acquired ESBL-EC infection is reported

to be as important as nosocomial ESBL-EC infection [25]. From this perspective, it is interest-

ing that nosocomial infection was not a significant risk factor for ESBL-EC bacteremia at mul-

tivariate analysis. On the other hand, it has been reported that residents in nursing homes have

high risk of carriage of ESBL-EC [24, 26]. Our result is consistent with these reports in that

nursing home-associated infection was significantly associated with ESBL-EC bacteremia.

Finally, exposure to antibiotics has been reported as the most significant risk factor in many

studies [1, 5, 9, 15–17, 19, 24, 26]. Antibiotic exposure is associated with multidrug resistant

organisms, not only by inducing mutations associated with antibiotic resistance, but also by

selecting resistant organisms; which is called selection pressure. In our study, antibiotic expo-

sure within 30 days was a significant risk factor for ESBL-EC bacteremia.

A number of studies found no significant association between ESBL production and crude

mortality [15–17, 19]. Conversely, several other studies observed that patients with infection

due to antibiotic-resistant organisms tended to have poorer outcomes [22, 27]. Inappropriate

empiric treatment, frequently observed in antibiotic-resistant E. coli infection, is the main

determinant of mortality. Again, due to sample size constraints, we performed only univariate

analysis, revealing multiple significant risk factors of death. Patients with ESBL-EC bacteremia

and ESBL/IMP-6-EC bacteremia may have poorer prognosis; however, there is need for fur-

ther study to appropriately identify the risk factors of death.

There are some limitations to our study. First, it involved a single center; hence, the gener-

alizability of our results to other settings may not be feasible. Second, the limited number of

patients prevented us from performing a more detailed statistical analysis. The difference in

mortality among non-ESBL-EC, ESBL-EC, and ESBL/IMP-6-EC cannot be attributed to the

Table 3. (Continued)

Variable ESBL-EC Non-ESBL-EC Univariate analysis Multivariate analysis

(n = 30) (n = 85) OR (95% CI) P value OR (95% CI) P value

Continuous hemodiafiltration 1 1 2.86 (0.04–229.6) .46

ESBL-EC, extended-spectrum beta-lactamase-producing E. coli; non-ESBL-EC, non-extended-spectrum beta-lactamase-producing E. coli; OR, odds ratio; CI,

confidential interval; IQR, interquartile range; SD, standard deviation; CCI, Charlson comorbidity index; Inf, infinity.

https://doi.org/10.1371/journal.pone.0202276.t003
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Table 4. Univariate analysis of risk factors for all-cause mortality within 14 days after onset of bacteremia due to E. coli.

Variables Survived (n = 105) Died (n = 10) OR 95% CI P value

Sex: male 50 6 1.53 0.43–5.41 .51

Intensive care unit after infection 17 4 2.91 0.82–10.33 .08

Inadequate antibiotic therapy within 24 h 9 5 9.11 2.63–31.55 < .001

Community-onset infection 51 3 0.55 0.14–2.15 .38

Healthcare-associated infection 38 2 0.53 0.11–2.48 .41

Nosocomial infection 54 7 1.80 0.47–6.99 .38

Nursing home-associated infection 7 2 2.80 0.59–13.19 .17

Antibiotic(s) used within 30 days:

Any antibiotic 41 9 10.93 1.38–86.3 .004

Any carbapenem 11 5 6.18 1.79–21.4 < .001

Any quinolone 7 1 1.52 0.19–12.0 .69

Immunosuppressant used within 30 days 30 5 2.18 0.63–7.52 .21

General anesthesia within 30 days 12 1 0.79 0.10–6.22 .82

Chemotherapy within 30 days 11 2 1.84 0.39–8.68 .43

Radiation within 30 days 4 0 <0.001 0–Inf .52

Intensive care unit admission 16 2 1.21 0.26–5.68 .81

Source of infection:

Urinary tract 60 2 0.21 0.046–1.01 .03

Intra-abdominal 28 4 1.71 0.48–6.05 .40

Catheter-associated 4 0 <0.001 0–Inf .52

Soft-tissue 1 1 8.21 1.03–65.3 .02

Pneumonia 4 0 <0.001 0–Inf .52

Unknown 8 3 4.39 1.13–17.0 .02

Comorbid condition(s):

Malignancy 45 4 0.86 0.24–3.04 .81

Diabetes mellitus 25 2 0.83 0.18–3.9 .81

Connective tissue disease 9 1 1.07 0.14–8.45 .95

Cerebrovascular disease 12 2 1.95 0.41–9.19 .39

Peripheral vascular disease 7 0 <0.001 0–Inf .39

Paraplegia or hemiplegia 7 1 1.20 0.43–3.36 .73

Dementia 7 0 <0.001 0–Inf .39

Cardiovascular disease 19 1 0.54 0.068–4.26 .55

Chronic liver disease 12 5 6.26 1.81–21.7 < .001

Renal insufficiency 15 2 1.46 0.31–6.86 .63

Chronic pulmonary disease 11 2 2.10 0.45–9.89 .34

Leukemia 3 1 3.55 0.45–28.0 .20

Lymphoma 4 0 <0.001 0–Inf .52

Peptic ulcer 2 0 <0.001 0–Inf .65

Indwelling device:

Peripheral catheter 25 2 0.74 0.16–3.50 .70

Urinary catheter 17 4 2.78 0.78–9.85 .10

Oxygen inhalation 15 3 2.15 0.56–8.31 .25

Central venous catheter 8 3 4.18 1.08–16.18 .02

Drainage tube 6 2 3.16 0.67–14.87 .12

Tracheotomy tube 2 2 6.50 1.38–30.61 .006

Nasogastric tube 1 3 13.17 3.39–51.14 < .001

Mechanical ventilation 2 2 6.50 1.38–30.61 < .001

(Continued)
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presence of resistance. For the aim to identify clinically relevant risk factors of resistance and

mortality, a multicenter study with a larger study population is warranted.

In conclusion, of 115 unique bloodstream infections caused by E. coli, 30 (26.1%) were

caused by ESBL-EC and three (2.6%) by carbapenemase-producing E. coli. All carbapenemase-

producing E. coli were IMP-6-producing strains that also produced ESBLs. Among the

ESBL-EC, 33.3% possessed CTX-M-27 and 30% harbored CTX-M-14. Nineteen (63.3%) were

ST131. Nursing home-associated infections and administration of antibiotic agents within the

previous 30 days were associated with ESBL-EC bacteremia. Overall, 14 day-mortality was

8.7% (10/115) with 4.7% (4/85) for non-ESBL-EC, 14.8% (4/27) for ESBL-only-EC, 20% (6/30)

for ESBL-EC, and 66.7% (2/3) for ESBL/IMP-6-EC; however, the sample size in this study was

not sufficient to evaluate the clinical impact on mortality, and further studies with larger sam-

ple sizes are warranted.
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