1	Biomechanical Study of Distal Radioulnar Joint Ballottement Test
2	Running title: Biomechanical study of DRUJ instability
3	Tadanobu Onishi, ¹ Shohei Omokawa, ¹ Akio Iida, ³ Yasuaki Nakanishi, ¹
4	Tsutomu Kira, ¹ Hisao Moritomo, ² Sompob Ruxasagluwang, ⁴ Jirchart Kraisarin, ⁴
5	Takamasa Shimizu, ¹ Yasuhito Tanaka ¹
6	
7	¹ Department of Orthopedic Surgery, Nara Medical University, Kashihara, Nara
8	Prefecture 634-8522, Japan
9	² Department of Physiotherapy, Osaka Yukioka College of Health Science, Osaka, Japan
10	³ Hanna Central Hospital, Ikoma, Nara, Japan
11	⁴ Department of Orthopedic Surgery, Chiang Mai University, Chiang Mai, Thailand
12	
13	Correspondence to: Shohei Omokawa Tel: +81-744-22-3051; Fax: +81-744-29-4902;
14	E-mail: omokawa@gaia.eonet.ne.jp)
15	
16	Grants and/or other sources of financial support: None
17	Conflict of interest: None
18	

19 Authors Contribution Statemer

- 20 Tadanobu Onishi contributed to the biomechanical study, the analysis and interpretation
- 21 of data, and drafting of manuscript submissions.
- 22 Shohei Omokawa contributed to the biomechanical study, the analysis and interpretation
- 23 of data, and drafting of manuscript submissions.
- Akio Iida contributed to the biomechanical study and the analysis and interpretation of
- 25 data.
- 26 Yasuaki Nakanishi contributed to the biomechanical study and the interpretation of data.
- 27 Tsutomu Kira contributed to the biomechanical study and the interpretation of data.
- 28 Hisao Moritomo contributed to the biomechanical study.
- 29 Sompob Ruxasagluwang contributed to the biomechanical study and analysis of data.
- 30 Jirchart Kraisarin contributed to the biomechanical study and the conception and
- 31 interpretation of data, and drafting of manuscript submissions.
- 32 Takamasa Shimizu contributed to the interpretation of data.
- 33 Yasuhito Tanaka contributed to the drafting of manuscript submissions.
- 34
- 35

37 Abstract

We investigated the reliability and accuracy of the distal radioulnar joint (DRUJ) 38ballottement test using five fresh-frozen cadaver specimens in triangular fibrocartilage 3940 complex (TFCC)-intact and TFCC-sectioned wrists. The humerus and proximal ulna 41 were fixed. The ulna was allowed to translate in dorsopalmar directions without rotation, 42and the radius was allowed to move freely. Four sensors of a magnetic tracking system were attached to the radius and ulna and the 43nails of each examiner's thumbs. Five examiners conducted the DRUJ ballottement test 44before and after TFCC sectioning. We used two techniques: with holding and without 4546 holding the carpal bones to the radius (holding and non-holding tests, respectively). We compared the magnitudes of bone-to-bone (absolute DRUJ) movement with that of the 4748examiner's nail-to-nail (relative DRUJ) movement. The intrarater intraclass correlation coefficients (ICCs) were 0.92 (holding) and 0.94 (non-holding). The interrater ICCs 49were 0.84 (holding) and 0.75 (non-holding). Magnitudes of absolute and relative 50movements averaged 11.5 and 11.8 mm, respectively (p<0.05). Before TFCC sectioning, 51the DRUJ movement during the holding and non-holding techniques averaged 9.8 and 525310.8 mm, respectively (p<0.05). The increase in DRUJ movement after TFCC sectioning was greater with the holding technique (average 2.3 mm) than with the 54

55	non-holding technique (average 1.6 mm). The DRUJ ballottement test with magnetic
56	markers is relatively accurate and reliable for detecting unstable joints. We recommend
57	the holding technique for assessing DRUJ instability in clinical practice.
58	
59	Keywords: biomechanics; distal radioulnar joint; ballottement test; human cadaver
60	

61 INTRODUCTION

The distal radioulnar joint (DRUJ) relies heavily on soft tissue support for stability, with 62dorsal and volar radioulnar ligaments being its primary stabilizers. Injury of the deep 63 radioulnar ligament at the ulnar fovea and base of the ulnar styloid may result in DRUJ 64 instability.¹ Untreated instability often causes wrist pain and/or weakness of grip 65 strength. Thus, accurately diagnosing DRUJ instability is clinically important. 66 Because of inherently unstable and complicated soft tissue structures of the 67 DRUJ, the diagnosis and treatment of the instability remain challenging. In the clinical 68 69 field of hand surgery, DRUJ instability is assessed by several manual stress tests, such 70 as the ballottement test, ulnocarpal stress test, and piano-key test. A previous biomechanical study using cadaver wrists demonstrated that, compared with other 71manual stress tests, the DRUJ ballottement test was the most accurate for evaluating the 72instability.1 73The DRUJ ballottement test is usually conducted in forearm neutral rotation 74and interpreted as positive if the examiner identifies conspicuous displacement of the 75radius relative to the ulnar head or lack of end-point resistance.^{1,2} Examiners may 76 77recognize DRUJ instability depending on the magnitude of movement of the examiners' fingernail grasping the ulnar head and the radius. During the testing, however, the 78

79	magnitude of movement of the radius and the ulna may be different from that of
80	examiner's fingernail. When the fingernail movement is larger than the bony movement,
81	examiners may overestimate the extent of DRUJ instability. Also, there is no
82	established maneuver for the DRUJ ballottement test, although two have been reported:
83	one with and one without holding the carpal bones to the radius during the testing. ^{3.4}
84	There are no reports available, however, that have claimed that one of these maneuvers
85	is more reliable or more accurate than the other for detecting DRUJ instability.
86	The purpose of this study was to investigate the reliability and accuracy of the
87	DRUJ ballottement test with these two techniques in triangular fibrocartilage complex
88	(TFCC)-intact wrists and in TFCC-sectioned wrists using cadaver specimens. We
89	hypothesized that examiners could over- or under-estimate DRUJ instability because
90	they must rely on the test's reliability and accuracy, which may be different for the two
91	techniques.
92	
93	MATERIAL AND METHODS
94	Specimen Preparation
95	We used five fresh-frozen cadaver upper extremities. All specimens were amputated
96	above the elbow and thawed at room temperature before use. Specimens were kept

97

constantly moist by spraying them with normal saline during the experiment.

98 Experimental Setup

99	The humerus and proximal ulna were fixed on the testing apparatus (composed of wood
100	and titanium screws) using Kirschner wire, with the elbow at 90° of flexion and the
101	forearm in neutral rotation. The ulna was allowed to translate in palmer and dorsal
102	directions without rotation, and the radius was allowed to move freely (Figure 1). Two
103	sensors of a magnetic tracking system (3SPACE FASTRAK; Polhemus, Colchester, VT,
104	USA) were attached directly in the distal aspect of the radius and ulna after injecting
105	silicone rubber (Blue Mix (50g) two-part silicon mould / mold making material.
106	Silicone rubber, Agsa Japan Co., Ltd) into the bone holes. The sensors were then rigid
107	in the bone holes after rubber polymerization. The other two sensors were attached to
108	the nails of the examiner's thumbs, with which the examiner would perceive instability
109	(Figure 2).
110	Sectioning the DRUJ Stabilizers and Data Acquisition

111 Five examiners (two board-certified hand surgeons and three board-certified orthopedic

surgeons) conducted the DRUJ ballottement test before and after sectioning the ulnar

- 113 insertion of the TFCC. TFCC was sectioned at its foveal and styloidal attachments to the
- 114 deep and superficial fibers of radioulnar ligaments and ulnocarpal ligaments (UCLs).

115	DRUJ capsules and the floor of the extensor carpi ulnaris (ECU) tendon sheath were
116	preserved to simulate a real clinical case. We used two techniques: with and without
117	holding the carpal bones to the radius during the testing (holding technique and
118	non-holding technique, respectively) (Figure 3). We measured the magnitude of the
119	movement between the radius and ulna (absolute DRUJ movement) and that between
120	the examiner's nails (relative DRUJ movement) using the electromagnetic tracking
121	device. Each test was repeated three times. The values of the three tests were averaged
122	and used to compare the magnitude of the DRUJ movement among different conditions.
123	Data Analysis
124	We determined the intra-rater and inter-rater reliability of the DRUJ ballottement test by
125	calculating the intraclass correlation coefficient (ICC) for dorsopalmar movement of the
126	DRUJ for the two manual testing techniques. ICCs were interpreted to be slight at ICC
127	>0 but <0.2, fair at ICC >0.21 but <0.4, moderate at ICC >0.41 but <0.6, substantial at
128	ICC >0.61 but <0.80, and almost perfect at ICC >0.81 but<1.00 by Landis and Koch's
129	criteria. ⁵ We compared the magnitude of the dorsopalmar real DRUJ movement with
130	that of the relative DRUJ movement to determine how the nail movement approximates
131	the bone movement. The magnitudes of the dorsopalmar movement of the DRUJ were
132	compared before and after TFCC sectioning in order to simulate clinical testing of both

133	injured and contralateral healthy wrists, and the two techniques were compared
134	regarding the holding and non-holding conditions.
135	Paired <i>t</i> -tests were used to determine the accuracy of the DRUJ ballottement
136	test for the holding and non-holding techniques and for the intact and TFCC-sectioned
137	wrists. Statistical significance was accepted at the $P < 0.05$ level.
138	
139	RESULTS
140	We conducted a total of 300 DRUJ ballottement tests by five examiners in five cadavers.
141	The mean values of three examinations were used for data analysis, and 100
142	bone-to-bone and nail-to-nail movements were analyzed to compare the magnitude of
143	DRUJ movement, including 25 values of intact and TFCC sectioned wrists with holding
144	and non-holding techniques.
145	

146 Intrarater and Interrater Reliability of the DRUJ Ballottement Test

- 147 The intra-rater reliability values, identified using the ICC of bone-to-bone movement
- during the holding and non-holding techniques, were 0.92 (almost perfect) and 0.94
- 149 (almost perfect), respectively. Inter-rater reliability with different wrists and techniques
- 150 were 0.89 (almost perfect) for TFCC-intact wrists with the holding technique, 0.8

151 (substantial) for TFCC-intact wrists with the non-holding technique, 0.74 (substantial)

152 for TFCC-sectioned wrists with the holding technique, and 0.68 (substantial) for

153 TFCC-sectioned wrists with the non-holding technique (Table 1).

154

- 155 Magnitude of DRUJ movement
- 156 Magnitudes of bone-to-bone and examiner's nail-to-nail movements averaged 11.5±4.4
- and 11.8±4.2 mm, respectively. There was a statistically significant difference between
- 158 these magnitudes (p < 0.05) regardless of the TFCC sectioning status or whether they
- 159 were tested using the holding or the non-holding technique.
- 160 Both techniques showed that real DRUJ instability was significantly increased
- 161 after TFCC sectioning. In TFCC-intact wrists, the magnitudes of the DRUJ movement
- 162 with the holding and non-holding techniques were 9.8 ± 4.1 and 10.8 ± 4.6 mm,
- 163 respectively. The magnitude of DRUJ movement with the holding technique, however,
- 164 was significantly lower than that with the non-holding technique (p < 0.05). After TFCC
- sectioning, the DRUJ movements increased to 12.1±4.1 and 12.4±4.3 mm, respectively.
- 166 Regardless of the technique used (holding or non-holding), the magnitude of DRUJ
- 167 movement in the TFCC-sectioned wrist was significantly greater than that in the
- 168 TFCC-intact wrist (p<0.05). The increased DRUJ instability after TFCC sectioning was

169 greater with the holding technique (average 2.3 mm) than with the non-holding

170 technique (average 1.6 mm) (Table 2).

171 **DISCUSSION**

172	The manual DRUJ ballottement test is widely used by hand surgeons to assess joint
173	instability. In clinical practice, it is important to compare DRUJ laxity between injured
174	and contralateral wrists instability. ² Based on the results of this study, intra-rater and
175	inter-rater reliability of the DRUJ ballottement test was almost perfect or substantial.
176	Also, the magnitude of DRUJ movement in the TFCC-sectioned wrist was significantly
177	greater than that in the intact wrist regardless of the technique used to assess it (holding
178	or non-holding). The current comparison between the intact and TFCC sectioned wrists
179	can be interpreted as comparison of clinical testing between intact and injured wrists.
180	Thus, these results suggest that the DRUJ ballottement test with magnetic markers has a
181	sufficiently high diagnostic performance to discriminate joint instability.
182	Clinical evaluation of joint instability during the manual stress test depends on
183	subjective judgment by each examiner. We interpreted the magnitudes of movement
184	between examiners' thumbs as relative DRUJ instability and those of bony movement
185	as absolute instability. The relative DRUJ instability was significantly increased when
186	compared to absolute DRUJ instability. We think that this difference was due to the soft

187	tissue that intervened between the nail and the bone during the testing maneuver.
188	Despite a significant result, there was minimal difference (0.3mm) between the nail to
189	nail and bone to bone movement, and we interpret the clinical significance of this
190	difference to be relatively small.

191	Several studies have investigated the accuracy of manual stress testing using
192	fresh cadaver specimens. ⁶⁻⁸ Little, however, has been reported on comparing the testing
193	techniques. Based on the current results, the inter-rater reliability of the DRUJ
194	ballottement test using the holding technique was greater than that for the non-holding
195	technique. Also, after TFCC sectioning, the increase of DRUJ movement with the
196	holding technique was greater than that with the non-holding technique. Thus, we
197	recommend use of the holding technique in the clinical setting to achieve more accurate
198	examinations. With intact wrists, the magnitude of the DRUJ movement is significantly
199	less with the holding technique than with the non-holding technique. We considered that
200	this difference of DRUJ movement was due to a difference of ligaments contributing to
201	the DRUJ stability between the holding and non-holding technique. Because the holding
202	technique holds the radius with the carpus firmly, the radiocarpal unit would be
203	stabilized by connections of the ulnocarpal ligaments and the floor of the ECU tendon
204	to the ulnar head. Three-dimensional ligamentous structures, which include not only the

205	radioulnar ligaments but the ulnocarpal ligaments and the floor of the ECU tendon, may
206	have constrained the DRUJ. 9,10 Meanwhile, in the non-holding technique, the
207	ulnocarpal ligaments and floor of the ECU tendon may have not supported the DRUJ,
208	because the carpal bones moved during the testing (Fig. 4).
209	This study has several limitations. First, the magnitude of the nail and bone
210	movements gave much useful data, but the direction of the displacement and rotational
211	movement of the radius against the ulna was not fully evaluated. In future studies, we
212	need to evaluate the three-dimensional movements including rotation. Second, we used
213	relatively elderly specimens in the experiment. Potential degeneration of the
214	ligamentous or cartilaginous structures could have affected the DRUJ instability. Third,
215	the magnitude of DRUJ movement may not reflect the true instability after a TFCC
216	injury because of the inherent stiffness in cadaveric specimens. Fourth, the pain
217	inhibition mechanism is absent in cadaveric studies. Thus, associated soft tissue injuries,
218	such as capsular rupture and tendon injury, may contribute to the magnitude of
219	instability. Fifth, this study was performed only in forearm neutral rotation. Evaluating
220	DRUJ instability in supination and pronation will be warranted in the future study.

221	Lastly, although we found a significant difference following TFCC sectioning, we have
222	no data if the examiners could actually appreciate the 2mm difference. There was no
223	test performed to determine whether this statistically significant difference can be
224	detected clinically without magnetic tracking.
225	In summary, we consider that the DRUJ ballottement test with magnetic
226	markers is able to detect an unstable joint relatively accurately and reliably. The
227	inter-rater reliability of DRUJ ballottement testing was higher with the holding
228	technique than with the non-holding technique. The increase in bone-to-bone movement
229	after TFCC sectioning was larger with the holding technique than with the non-holding
230	technique. We therefore recommend holding technique and to compare the laxity
231	between affected and the opposite wrists in diagnosing DRUJ instability in clinical
232	practice.
233	
234	ACKNOWLEDGMENTS
235	The authors thank Prof. Dr. Pasuk Mahakkanukrauh for extensive help in the current
236	cadaveric study.
237	
238	

REFERENCES

240	1.	Moriya T, Aoki M, Iba K. 2009. Effect of triangular ligament tears on distal
241		radioulnar joint instability and evaluation of three clinical tests: a biomechanical
242		study. J Hand Surg Eur Vol. 34: 219–223.
243	2.	Kim JP, Park MJ. 2008. Assessment of distal radioulnar joint instability after
244		distal radius fracture: comparison of computed tomography and clinical
245		examination results. J Hand Surg Am. 33: 1486–1492.
246	3.	King GJ, McMurtry RY, Rubenstein JD. 1986. Computerized tomography of the
247		distal radioulnar joint: correlation with ligamentous pathology in a cadaveric
248		model. J Hand Surg Am. 11: 711–717.
249	4.	Szabo RM. 2006. Distal radioulnar joint instability. J Bone Joint Surg Am. 88:
250		884–894.
251	5.	Landis JR, Koch GG. 1977. The measurement of observer agreement for
252		categorical data. Biometrics. 33: 159-174
253	6.	Phisitkul P, Chaichankul C, Sripongsai R. 2009. Accuracy of anterolateral
254		drawer test in lateral ankle instability: a cadaveric study. Foot Ankle Int. 30:
255		690–695.

256	7.	Bae JH, Choi IC, Suh SW. 2008. Evaluation of the reliability of the dial test for
257		posterolateral rotatory instability: a cadaveric study using an isotonic rotation
258		machine. Arthroscopy. 24: 593–598.
259	8.	Vaseenon T, Gao Y, Phisitkul P. 2012. Comparison of two manual tests for
260		ankle laxity due to rupture of the lateral ankle ligaments. Iowa Orthop J. 32:
261		9–16.
262	9.	Palmer AK, Werner FW. 1981. The triangular fibrocartilage complex of the
263		wrist: anatomy and function. J Hand Surg Am. 6: 153-162.
264	10.	Schmidt HM. 2004. The anatomy of the ulnocarpal complex. Orthopade. 33:
265		628–637.
266		

267	Figure 1. Humerus and proximal ulna were fixed to a testing apparatus using
268	Kirschner wire, with the elbow at 90° of flexion and the forearm in neutral rotation.
269	Four sensors of a magnetic tracking system were attached directly to the distal aspect of
270	the radius and ulna and to the nails of the examiner's thumbs.
271	
272	Figure 2. (Left) Two sensors were attached to the nail of examiners' thumbs, by
273	which the examiner would perceive a sense of instability. (Right) The other two sensors
274	of the magnetic tracking system (3SPACE FASTRAK; Polhemus, Colchester, VT, USA)
275	were attached directly to the distal aspect of the radius and ulna.
276	
277	Figure 3. (Left) Distal radioulnar joint (DRUJ) ballottement test while holding the
278	carpal bones to the radius (holding technique). (Right) Non-holding technique.
279	
280	Figure 4. In the intact wrists, the magnitude of DRUJ movement using a holding
281	technique was significantly smaller than that using a non-holding technique. This
282	difference of DRUJ movement assumed to be due to a difference of ligaments
283	contributing to the DRUJ stability between the holding and non-holding technique. In
284	the holding technique, not only the Radioulnar ligaments: RULs (red), but the

285	Ulnocarpal ligaments: UCLs (green) and the floor of the ECU tendon (blue) may have
286	constrained the DRUJ via the holded radiocarpal unit. Thus, these three-dimensional
287	ligamentous structures may have supported the DRUJ during the holding technique.
288	Meanwhile, in the non-holding technique, the UCLs and floor of the ECU tendon may
289	have not supported the DRUJ, because the carpal bones moved freely during the test.
290	Thus, two-dimensional ligamentous structures of the RULs only stabilized the DRUJ
291	during the non-holding technique.
292	
293	
294	
295	